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Said by some to be the greatest scientist of all time,
without whom the world might in so many ways be a different place.
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RECENT POSTS ALAN TURING DRAMA-DOCUMENTARY

CODEBREAKER is reaching a worldwide audience. Nearly two million people on four continents have

watched the film so far. R

Recently, more than 325,000 people in Australia watched this drama-documentary on SBE The
film also recently broadcast on TV3 in Catalonia, Spain. Plus, a national cable network in the United
States has just finalized plans to show CODEBREAKER late this year. Broadcast plans for other
countries will be announced in the weeks and months ahead. Stay tuned for details!

in the United Kingdom broadcast the film in November of 2011, attracting an audience of 1.5
million viewers. The Times described the film as “...an overdue and thoroughly honourable telling of
this dreadful story.” Another critic called the film, “awe-inspring.” The Sunday Times said it was
“powerful” and “imaginative.” R

CODEBREAKER tells the story of one of the most important people of the 20th century. Alan Turing

et in motion the computer age and World W\ odebreaking helped save two million live =

www.TuringFilm.com



A. M. Turing (1936), "On
computable numbers with
an application to the
Entscheidungsproblem”

During WW I
(1939-1945), led code-
breakers at Bletchley Park
to substantially influence
outcome of war

C. E. Shannon (1948), "A
Mathematical Theory of
Communication” birth of
information theory, makes
connection between
probability and information

circa 1948 Turing writing
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A. M. Turing (1950),
"Computing machinery
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test
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Later 1960s

R. J. Solomonoff (1964a-
b), “A formal theory of
inductive inference, Part
1”, “..., Part II” birth of
algorithmic information
theory and algorithmic
probability, tells us how
to use past data to
probabilistically predict
the future

A. N. Kolmogorov (1965),
"Three approaches to the
guantitative definition of
information” independent
development of algorithmic
information theory (also
known as Kolmogorov
complexity), but connection
not made with probability

G. J. Chaitin (1969, 1966)
works on algorithmic
information theory,
connection also not made
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CS Wallace and DM Boulton (1968), "An
information measure for classification”
develops the Bayesian Minimum Message
Length (MML) principle, shows how to use
information theory and two-part
compression to actually do statistical
inference - initially with a clustering
problem, and applies theory to a data-set of
seal skull measurements [followed by
Boulton and Wallace (1969, 1970, 1973a-b,
1975), Wallace and Boulton (1975), etc.]

An information measure for classification

By C. S. Wallace* and D. M. Boulton*

This paper derives a measure of the goodness of a classification based on information theory. A
classification is regarded as 2 method of economical statistical encoding of the available attribute

information.

The measure may be used to compare the relative goodmess of classifications produced by
different methods or as the basis of a classification procedure,

A classification program, ‘SNOB’, has been written for the University of Sydney KDF 9
computer, and first tests show good agreement with conventional taxenomy.

(First received December 1967)

1. Introduction

In all fields of discourse, the basic objects of concern
are classified, and names given to the classes, 1o enable
us to make general statements whose meaning applies to
many objects rather than to a single object. For such
a classification to be useful, the objects within a single
class must essentially be equivalent at some level of
discourse, The problem of generating a useful classi-
fication, exemplified by taxonomy, may be stated as
follows:

Given a set of § things and for each a set of D measure-
ments (attributes), to form a partition of the set of things,
or, equivalently, a partition of the D-dimensioned
measurement space within which each thing may be
represented by a point, such that the things within each
subset, or region of measurement space, may usefully be
treated as equivalent in some discussion.

Many classification processes have been devised in
answer to this problem (Sokal and Sneath, 1963;
Williams and Dale, 1965). These methods have usually
been directed towards producing classes such that
members of the same class are as ‘similar’ as possible
andfor members of different classes are as ‘dissimilar’ as
possible, Such aims, while not necessarily equivalent to
the general aim described above, can obviously be
expected in practice to produce classifications which well
serve the general aim. Unfortunately, the different
measures of similarity between things and between
classes of things which have been used in these processes
result in significantly different classifications, and it is
usually left to the user to choosc that method which
produces the most useful result.  Moreover, it is difficult
in many of these processes 1o separate & measure of the
success of a classification from the process used to
generate it.  There is no readily applicable objective
criterion firmly based on the original aim of the classi-
fication which can be used to compare the relative
success of different processes,

The aim in this paper is to propose a measure of the
goodness of a classification, based on information
theory, which is completely independent of the process
used to generate the classification.

2. The information measure

A classification may be regarded as a method of
representing more briefly the information contained in
the § x D attribute measurements,

These measurements contain a certain amount of
information which without ¢lassification can be recorded
directly as S lists of the D attribute values. If the things
arc now classified then the measurements can be recorded
by listing the following:

1. The class to which each thing belongs.

2. The average propertics of each class.

3. The deviations of each thing from the average
propertics of its parent class,

If the things are found to be concentrated in a small
arca of the region of each class in the measurement space
then the deviations will be small, and with reference to
the average class propertics most of the information
about a thing is given by naming the class to which it
belongs. In this case the information may be recorded
much more bricfly than if a classification had not been
used. We suggest that the best classification is that
which results in the briefest recording of all the attribute
information.

In this context, we will regard the measurements of
each thing as being & message about that thing.
Shannon (1948) showed that where messages may be
regarded as each nominating the occurrence of a par-
ticular event among a universe of possible events, the
information needed to record a series of such messages
is minimised if the messages are encoded so that the
length of each message is proportional to minus the
logarithm of the relative frequency of occurrence of the
event which it nominates. The information required is
greatest when all frequencies are equal.

The messages here nominate the positions in measure-
ment space of the S points representing the attributes of
the things. If the expected density of points in the
measurement space i$ everywhere uniform, the positions
of the points cannot be encoded more briefly than by a
simple list of the measured valucs. However, if the
expected density is markedly non-uniform, application

* Basser Computing Department, School of Physics, University of Sydney, Sydney, Ausiralia.
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Abstract

The purely behavianral natoure of the Turing Test leaves many with The view
that passing il is uel sufficienl for “intelligence” ar “understanding”™.  We prapose
hiere an additional necessary campnlalional requirement an inlelligence thal is non-
belaviaural in nalure and which we canlend is necossary for a ccnmmansense nalion
af “inductive learning” and, relaledly, of fintelligenee’. Naid ranghly, onr prapasal is
thal a key Lo Hhese cancepls is he nation af compressian of data. Where The agenl
under assossmonl is able lo commuuicale, e.g. by a lele-lype machine, anr eriterion
is thal.in additian la requiring the agenl ™s being able Lo pass Turing’s arginal | bhe-
havionral) Turing Tesl. we alsa require thal the agenl have a samowhal campressed
reprosentalion aof Lhe lesl damain. Our reasan for adding this roquirement is Lhal.
as wo shall argne from belh Bayesian and informalian-thearolic grannds. induclive
learning and campression are tantamannl lo the same thing. Woe can anly campross
data whoen we learn a patlern arstructure. and it seems quile reasanable 1o require
that an Simtelligont” agent can indonctively learn (and recard the resull learnt from
the comprossion | Woe illnsirale these ideas and aur extension of the Toring Tost
via Searle’s Chinese racin example and the prablom of alher minds.

Wo alsa ask Hhe following question: Given Lwao pragrams f and {1, respectively
af lengthsfy and P & < F 0F 1 and 1, perfarm equally well (1o date] on a Toring
Tosl, which, if either, shanld be preferred far the futnre?

Wo also sel a challonge. If hnmans can presinne intelligencee in their abilily 1o
set the Turing tesl, then we issue the additional challonge 1o researchoers la aol
machines lo admimisfer Lhe Turing Tesl.

Keywords: "Turing ‘lost, Philasaphy of AL compression. Bayesian and Stalistical
Learning Molhads. Machine Learning. Cagnitive Madelling,.
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Abstract

he Imifation Game
commonly known as me Tmm l'e
Dowe, http://plato.stanford edu ‘entries/turing
was proposed as a way in which thinking or intellizence
could be ascribed to any agent - mc.udmg a computer
program or machine - able to play the game People
routinely ascribe intelligence to humans and other
animals by a variety of means, including those discussed
by Turing. But when humans wish to specifically
quantfy intelligence, this is most commonly done by
means of an intellizence quotient (1Q.) or other aptimude
test. Many such aptitude test questions fit in to Tunng's
(1950) famework of being able to be typewritten to a
teleprinter communicating between two rooms - oI, using
modem technology still well within the spirit of Turing
zame, being able to be typad as text into 2 World Wide
Web (WWW) page applet. Sequences of such questions -
such as an entire 1.Q. test of them - may well form a
strict subset of Tunng imitation games, since they
fypically are independent of one another and do not take
any advantage (or even account) of the contextual
(conversational) framework of Tunng's game. We
present here a fairly elementary WWW-bas ed computer
program (shown in 'u_rve part at Lm'_m;
personal monash edu au'~ which, on a vanety of
1.Q. tests, regularly ohuna a score close to the purportad
average human score of 100. One conclusion that some
might make 15 to ascribe intellizence to the program.
Another conchusion to make is that the reason that 1.Q.
test success can be automated with comparative ease is
that administering an I Q test requirss lirtle intelligence -
it requires comparatively little more than ziving a list of
questions with ‘known answers. Turing's imitation game
test requires greater intelligence to pass largely because
of the flexibility it permits to an intelligent questioner -
such as in the use of lanzuage and in taking into account
the responses to previous questions before continuing the
of questioninz. We also briefly consider
tion of the imitation game “test” via “detection
s” as a test in its own right (Dowe and Hajek,
CalTech Turing Tournament,
hetpo/turing.ssel caltech edu, 2003). All other things
being egual, 2 more intellizent administrator can
administer a more challen - and this notion can
be continued recursively (Dowe and Hajek, 1998)

1. Introduction

.-\131: Turing suggested the Imitation Game ..-alu
ring, 1950), now known as the Turing Test, in
as a way of ascribing thinking, or mtelhzence to
machines. It involves the interrogation by a rudze of a
buman and 2 machine using teletype fom behind a
screen where the judge knows that one is a human and
one is a machine, but the judge doe: not know a prion
which is which The test requires the machine to fool
the judge into believing that it is human and that the
human is the machine - and the Turing Test has
certainly been frequently discussed and surveyed
(Moor, 2000; Saygin et al., 2000; Copeland 2000; V
Akman and P. BLaghbm. 2000; Oppy and Dowe,
2003). 1.Q. tests are used to measure the level of
intellizence of bumans. If a computer is made to take an
I.Q. test. it. too, can be given a score based on its
performance. Given that such scores are usad as a
measure of human intellizence, it seems plansible that
such a score might be used as an indication of the level
of intelligence of the computer

We present here a program which takes I.Q. tests in
the form of questons typed in the text box of a simple
webpage. The score can be calculated based on the
number of questions it answers correctly. In cases
where the queston cannot (yet) be represented to the
program (e.g., picure questions, such as in Figure 1)
and there are n options, the program gets a score of 1'n
for the question. This is because the probability of
getting the answer right is 1'n and so the long
average score from guessing is (n-1)nx 0+ Ilmx
1.

More 15 said sbout I1Q. tests and their constituent
questions in Section 2, the program i Section 3, and
the program's performance in Section 4: and in Section
5 we discuss administration of the Turing Test as a test
in its own right and the relevance of information-
theoretic compression to inductive leaming and
intellizence.




Vvch ore of tha raloes Ay wilbe nect in 1he seguance?

Figure 1: A picture question.

2.1Q. Tests

Intellizence Quotient or I1Q. (A.CE., unknown: H. J
Eysenck, 1988; Helenelund HB, 2001;
http:/‘heim ifi wio.no/~davidra1Q/. unknown; I.Q. Test
Labs, 2003; EHAN-UUL Institute, 2001; Mensa, 2000;
Testedich.de, 2002) 1= used as 3 measure of human
intelligence. The first 1.Q. test was conducted by a
French scholar, Alfred Bmet, around 1906 (KHAN-
UUL Insatute, 2001; Enyclopedia Britanmica, 2000)
The original purpose of the test was to identify slow
learners in school. 1.Q. is the ratio of mental age over
chronological age. For example, consider a child of age
12. A mental age of 10 will suggest an 1.Q. of 10/12 x
100 = 83; and a mental age of 14 will suggestan I1Q. of
14/12 x 100 = 117. An I.Q. of 100 implies that the
mental age is same as the chronological age

If a computer program can achieve a score between
90 and 110, it can arguably be said to have average
intelligence (H. J. Eysenck, 1988). The program should
ideally not be test specific, as it would be rather
abnormal to get a score of over 120 on one 1.Q. test and
under 50 on another test.

2.1 Forms of frequently asked L.Q. questions

Most I.Q. tests seem to have cemain similar
characteristics. An analysis of various 1.Q. tests (such as
those listed above) shows that the following types of

quesfions are common:

1. Insert missing number
a. Atend
b. In middle

2. Insert missing letter

a. Atend

b. Inmiddle
3. Insert suffix/prefix to complete two or more
words

4. Complets mamix of numbers/characters (see
Figure 2)

Questions involving directions

Questions involving comparison

Picture questions (see Figure 1)

Pick the odd man out (word or picture)

-l O\

Complete the metric

Figure 2: A matix question

3. The Program
The program. which can be accessed from hep:/www-

personal monash edu aw'~psan5, recogmizes  these
characteristics (forms of frequendy asked IQ.

questions) from Section 2.1 and tries to find the best-
suited solution. It is written in Perl and 1s about 960
lines of code

A parser with a resmcted vocabulary and a2 basic
string search for keywords can be implemented to
recognise the type of question. It can then be simple for
the program to calculate the answer based on some pre-
defined rules

A mvial way of recognising the question would be to
look for patterns such as “What is the next number in
the sequence”™ A small change in the format of the
question will cause the current version of the program
to fall over. We can overcome this by looking for
certain  keywords (e.g., number + sequence). A
comprehensive list of keywords can be made for each
type of question. If two questions have similar or
identical keywords, extra keywords or patterns need to
be included to differentiate between them

A thorough list of possible keywords for a certain
type of question can be made by analysing a large
number of 1.Q. tests. Even then there may be cases
where it cannot identify the guestion or identifies it
incorrectly. Provided the keyword list is made properly,
this should be rare.

Once the type of guestion is established, it can be
simple for the program to find the answer. An algonthm
that does calculations and'or searches can easily be
made that can find most of the answers to the questions.
A large number of questions that involve simple logic
can be programmed.

We now discuss the program’s answers to LQ.
questions of frequently asked forms, such as those fom
Section 2.1.

3.1 Insert missing number or letter at end
Consider the question — “Insert the next number in the
sequence - 1 2 3 4 57 “‘Number’ could be replaced by




‘digit’, and ‘sequence’ could be replaced by ‘series’. It
could also be phrased as “Which number follows
logically - 12 3 4 57 or “What is next in the sequence -
12 3 45" Keywords for this type of question could be
((insert | what || which) && (aumber sequence

series)). where ‘&&° denotes ‘and’ and ‘" denotes
‘or’. An example of phrasing that can be usad for more
than one type of question would be — “What is next in
the sequence - 1 2 3 4 57, or “What is next in the
sequence - A B C D E”. They can be differentiated by
the fact that one has a sequence of numbers and the
other has letters. The keywords for number sequences
may be extended to check that there are only dizits (0-
9) and separators in the sequence section. The keyword
for character sequences will not be extended as they can
contamn numbers and characters in the sequence section

In the case of sequence questions, certain types of
sequences  (Anthmetic  Progression, Geomefmric
Progression, Fibonacci Series, Powers of a series, etc.)
are used frequemtly in IQ. tests - see, ez, (ACE,
unknown; H. J. Eysenck, 1988; Helenelund HB, 2001;
hopoheimafi wio no'--davidra 1O/ unknown; I.Q. Test
Labs, 2003; EHAN-UUL Institute, 2001; Mensa, 2000;
Testedich.de, 2002). If the given sequence is any of the
types of seaquence described above, it can be checked
with ease. If it is, the next number/character can be
calculated simply according to the properties of the
sequence, although at least three numbers/letters are
required to find a pattern. The program can solve this
type of question from I.Q. tests most of the time. There
will be cases when an answer cannot be found or the
answer found is incorrect. Since it is rare for humans to
get all answers comect, it is not considered a big
problem.

digit

3.2 Insert missing number or letter in middle

1s type of question will be recognised using a
technique similar to the one used in Section 3.1. An
example would be ‘Insert the missing number: 10 20 ?
0 50°. The program will look for a special character (x
_ | 7) inside the sequence, where, aga ' denotes
‘or’. The number's or letter/s for that position's can be
guessed using the properties for sequences mentioned in
Section 3.1. The enare sequence 1is then checked. If
valid, the answer is found. This is not yet implemented
in the program.

3.3 Insert suffix/prefix to complete two or more
words
This kind of question can again be recogmised by
keywords. For questions involving suffix and prefix
(e.g.. What completes the first word and starts the
second: wi..nt), keywords could be ((suffix && prefix)
(complete && word)), where, denotes ‘or’ and
‘&&” denotes ‘and’. Brute force is then used to search

for a suffix for the prefix from the word list. Next it
checks if that suffix is a prefix for the suffix.
Sometimes, only a suffix is requested for more than one
word (e.z., Insert a word of size 2 that completes the
words: ma, fa, chara (..)). The technique remains much
the same. Instead of checking if the prefix is valid the
next time it will check if it is a valid suffix for the rest
of the words. A repeatad prefix can also be found using
the technique with slight modifications (e.g., Insert the
word of size 2 that completes the words: (..) de, ke, It,
trix). Most of this is implemented in the program.
Currently, the program requires the question to be re-
formatted from “wi.nt’ (it 1s found on 1.Q. tests in this
or similar format) to ‘2-wi-nt’. This can be
implemented but it hasn’t yet been done in the program.
With the re-formatted input the program generally finds
the solution.

3.4 Complete matrix of numbers/characters

In order to complete the matrix pattems (e.z., for
Figure 2, a column is double the previous column)
existing inside the matrix have to be identified. Once
they are identified, the pattern can be applied to find the
most appropriate value. Patterns can be found using the
following techniques

1. The sum ofrows can be the same.

2. It could be in the form described in Figure 3,
where ‘o’ represents an arithmetic function
such as “+7, -7, “&7 ¢ " etc.

Operators (*+°, *-%, ‘*', <, *** etc. and one

‘=") are inserted between columns. If the same

combination 1s valid for each row, that is the

pattemn.

4. Zig-zag through rows to find a pattern.

The matrix is transposed and above steps are

repeated

6. Columns are shuffled and steps 3, 4 are
repeated

This is not yet implemented in the program

[

w

¥ | Mok | #oroB

¥ | Yo | vonroB

Z | ZoA | TosoB

Figure 3: Pattems in matrix questions

3.5 Questions involving directions

Keywords like (left || right || east || west | north || south)
can be used to identify questions involving directions.
Directions can be represented quite easily using




Assuming north to be 0
east becomes 90"

and moving
can be
distance
between them can be calculated using methods such as
Pythagoras’s theorem For example, ‘Joe moves three
blocks east, takes a right um and walks further four

The points

steps. How far 1s he from his original position?’ From
the first part of the sentence it will take ‘three’ and
‘east’ and make the new position 3 units 90" right of
north. Next, ‘right tum” and ‘four’ will be taken into
consideration, making the new position 90" right 4
units away from previous position. The distance
between points can be calculated using properties of a
miangle. This is not yet implementad in the program.

3.6 Questions involving comparison

First, all the elements being compared should be listed
Positions are given to elements relative to others basad
on initial sentences. The list is parsed for elements,
which can be given positon relative to other elements.
Consider, e.g., “A is taller than B, B is taller than C”. In
the second parse, A, B, and C will be given positions
relative to one another (rather than merely the two
inigal separate comparisons not relating A to C). The
two extremes and the complete, total ranking can then
be found. This is not yet implementad in the program.

3.7 Picture Questions

The aim of picture question is to check for pattern
recognition. It will be hard for a program to solve
picture gquestions (see, e.g., Figure 1). This 1s mainly
because it 1s tough to represent them in a teletype
environment. If the picture were defined symbolically,
perhaps too much work would have been done in overly
assisting the program. If the picture is described (e.z.,
the second element in the sequence i an unshaded
square with a diagonal top right to bottom left), then
parsing will be a challenge (see also Section 5.1). This
is not yet implemented in the program

3.8 Odd man out
Odd man out questions are commonly used in I.Q. tests
(ACE., unknown: H J. Eysenck, 1988; Helenslund
HEB, 2001: http:/hetm.ifi uio.no/~davidraIQ/,
unknown; I1.Q. Test Labs, 2003; KHAN-UUL Institute,
2001; Mensa, 2000; Testedich de, 2002). They require
one to differentiate names of countries, cities,
vegetables, fruits, etc. To differentate between objects,
one probably needs to understand their concept. But,
there may be many categories for objects (e.z., for
picture questions from Section 3.7

7, a circle is in both
the family of geometnc shapes, and also geometnc
shapes with no edges). It could be a challenge for some
ame yet to make a computer program understand the
concept behind different pictorial objects. However.

odd man out questions not involving pictures may well
be amenable before too long to a search analogous to a
much more complicated version of that required in
Section 3.3. This is not yet implemented in the
program.

3.9 Coding

These questions generally mvolve coding fFom
alphabets to numbers or vice versa (e.g., If ENOW is
20 23 24 32, what is CODE?). These questions are of
the kind

(f&& (a-z | A-Z || 0-9)+ && 1s && (a-z | A-Z || 0-9)+
&& what && is && (a-z | A-Z || 0-9)+), where ‘+’
denotes one or more and. as before, ‘||" denotes ‘or’ and
‘&&° denotes ‘and’. A relation is found between
‘ENOW’ and ‘20 23 24 32 based on ACSII values.
The same relation is then used to find the code for
‘CODE". This is not yet implemented in the program.

3.10 Other Kinds of questions

An IQ. test that steers away fom the usuzl way of
testing (certain types of questions can be expected most
of the time) or 2 non-standard test will be cause for
concern. Not being able to identify the questions, the
program will fail the test. It is highly unlikely that a
human can’t comprehend any or most of the questions
on an I1.Q. test.

4. Results — the program’s “LQ.”
We present here the results of the program on various
I1.Q. tests. Most of the questions from the I.Q. tests were
re-formartted before being entered to the program (see
Section 3).

Table 1: 1.Q. Scores on various tests.

Test 1.Q. Score Human
Average
ACE.IQ. Test 108 100
Eysenck Test 1 07.5 90-110
ysenck Test 2 107.5 90-110
vysenck Test 3 101 90-110
st 4 103.25 90-110
ysenck Test 5 107.5 90-110
Eysenck Test § 95 90-110
ysenck Test 7 1125 90-110
ysenck Test 8 110 90-110
I1Q. Test Labs 59 80-120
Testedich.de - The IQ. 84 100
Test
L Q. Test from Norway 50 100
Average 96.27 92-108

As seen from Table 1. the program scores high on
some tests and low on others. A link can be seen
between the score and the type of 1.Q. test. The program
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can attain a high score with ease on 1.Q. tests which are
more focussed on mathematics, pattern recognition,
logical reasoning and computation. On the other hand,
1.Q. tests that are based on general knowledge, language
skills and understanding are a challenge to the program.
The case is often the reverse for humans. Of course,
buman IQ. tests are anthropomorphic (or
“chauvinistic™), and an intelligent non-English speaker,
non-human earthling or extraterrestrial could be
expectad to struggle on an English-language 1.Q. test.

5. Some thoughts and discussion
First, apart ffom relatively minor issues such as
memory and running speed, the “intelligence™ of a
computer presumably depends almost solely on the
software program it is nmning. That said, we now ask
some additional rhetorical questions.

Are 1Q. tests really @ measure of our intelligence?
Will getting 2 higher score than @ human mean that the
computer program is more intelligent than that human?

Without necessarily fully answenng either or both of
these two questions, let us take this discussion in two
directions. In so doing, we shall consider two possible
modifications to the Tunng test.

5.1 Administering the Turing test

Recalling Sections 2.1 and 3, most 1.Q. test questions fit
straightforwardly into Turing’s original conversational
framework. With however much more work (to a
human or possibly a non-human possibly poised with
pen{cil) and paper), picture/diagram questions can
probably also — by careful description — be brought
within Turing’s conversational framework. So, 1.Q. test
questions seem, by and large, to fit neatly into Turing’s
conversational framework. Whereas the judze (or
administrator) of Turing’s imitation game test can lead
the conversation in any oumber of directions given the
conversation so far, LQ. test questions asked largely or
totally neglect the answers to previous questions. In
other words, an L.Q. test requires less intellizence to
administer than a Turing imitation game test — and this
is essentially why it is less challenging and easier (for a
computer program) to pass. This raises the issue that
intelligence is required to administer 2 Tunng test — and
thiz ability could be used as a measure in a test for
intelligence. Of course, we can continue this recursively
(Dowe and Hajek, 1997: Dowe and Hajek, 1998). More
explicitly, some intelligence is required to pass a Turing
test (TTO). If we set up a new test, TT1, which is to
correctly administer/judge TT0, then that presumably or
seemingly requires more intelligence to pass. The test
for “detection programs” in the Caltech Turing
Toumament (CalTech, 2003) is a case in point. And, of
course, we can continue this recursively (Dowe and

Hajek, 1997: Dowe and Hajek, 1998) and. e g, setup a
new  test, TT2, which is to comrectly
administer/judge/detect in TT1. (Passing the Turmng
Test, TTO, is analogous to writing & good academic
paper. Passing TT(1) is analogous to being a zood
referse. Passing TT(2) is analogous to beinz a good
member of a program committee or editorial board —
one must be able to choose appropriate referees.)
Continuing recursively by induction, given test TT(1),
we can set up a new test, TT(i+1), which is to comectly
administer/judge/detect in TT(3). Etc. While all of the
above is true and TT(1), TT(2), ..., TT(Q@), ... are all
interesting, salient and worthwhile directions in which
to re-examine the Turing Test (TT0), it would also at
least appear to follow by mathematical induction that
each of TT(1), TT(2), ..., TT(1), ... can be expressed -
albeit seemingly in increasing order of difficulty — in
Turing's original conversational framework, TTO

5.2 Inductive learning, compression and MML
The other direction in which we take this discussion 1s
the observation — see (Dowe and Hajek, 1998) and
elsewhere — that traits which seem to be necessary for
(buman) intelligence and which certamly are assessed
in human I.Q. tests include rote leaming (and memory),
deductive leaming (e.g., via modus ponens) and
inductive learning. Inductive learming is perhaps the
most important, significant and impressive of these.
When asked for a list of great thinkers and minds, the
primary reason for the inclusion of Newton, Darwin,
Einstein and others is because of their inductive
inferences - or inducuve leamning - of theories (gravity
and laws of motion, evolution, relativity, etc.)

The relevance of compression to learning languages
is discussed in (Wolff, 1995). The Mimimum Message
Length (MML) theory of inductive inference (Wallace
and Boulton, 1968; Wallace and Freeman 1987;
Wallace and Dowe, 1999) states that the best theory, H,
to infer from data, D, is that which minimises the
(compressed) length of a two-part message ransmitting
H followed by D given H. MML is a quantitative form
of Ockham’s razor (Needham and Dowe, 2001),
rewarding simple theories which fit the data well The
relationship between MML, Kolmogorov complexity
(Kolmogorov, 1965) and related (information-theoretic)
works (e.z.. (Solomonoff, 1964)) is thoroughly
discussed m (Wallace and Dowe, 1999). MML 1is
relevant to inductively learning all range of models -
not just languages — fom data.

Given the relevance of two-part MML compression
to inductive learning, Dowe and Hajek have argued
(Dowe and Hajek, 1997: Dowe and Hajek, 1998) that
an “additional requirement on Turng’s test is to insist
that the agent bemng subjected to the Turing test not
only pass the test but also have a concise, compressed
representation of the subject domain™ Independently

but quite relatedly, Hemandez-Orallo and Minaya-
Collado (1998) also propose that “intellizence is the
ability of explanatory compression™. They then go on to
propose a variation of the I.Q. test based on
Kolmogorov complexity.

6. Conclusion

While Section 5 considers two interesting possible
modifications to the Turing (imitation game) test, the
bulk of the paper concerns the performance of a
comparatively small computer program (approximately
960 lines of Perl code) on human I.Q. tests. The
program obtains very close to the purported human
average score both on a variety of LQ. tests and on
average. Although some bhuman pre-processing
admirttedly takes place with some forms of questions, it
should be emphasised (see Section 3) that both viable
improvements in the parser(s) and an increase in the
number of question forms attempted should enhance the
program’s score while reducing or even eliminating
buman pre-processing requirements. In addition and at
the very least, even the current preliminary version of
the program could assist and sugment the score of a
human able to parse the questions.
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The 1.Q. Program

This was P.Sanghi's third year project (CSE3301) for Bachelor of Computer Science. The program written in Perl takes I.Q. tests and has average human intelligence.

P Sanghi and D L Dowe: A Computer Program Capable of Passing I.Q. Tests, in P P Slezak (ed), Proceedings of the Joint International Conference on Cognitive Science, 4th ICCS International Conference on Cognitive Science & 7th ASCS
Australasian Society for Cognitive Science (ICCS/ASCS-2003), 13-17 July 2003, Sydney, NSW, Australia, pp 570-575.

What is the program about?

This program takes [.Q. tests

There are some errors in the program. The original copy was deleted from the server. There were some bugs in the backup copy which need to be fixed. The word list is now taken from unix system dictionary.
Currently it can only solve sequences. Eg. of a very simple sequence would be "1 2 3 4". They could also consist characters "a B ¢ D e F" or characters and numbers "alb2 ¢ 3 d"

The program has a very limited vocabulary. The words it understands are

add, are, character, characters, digit, digits, enter, give, insert, in. is, find, letter, letters, missing. next, number, numbers, please, series, sequence, the, two, what

Instructions

Make a question using the dictionary given above and type it in
Insert a hypen/dash (-)

Type the sequence, separate character by space

Insert the next number the sequence -0 136 11 19

Insert the word that completes the first word and starts the second S(...)T

Complete words 3-s-t

Insert the word that can be prefixed by any of the letters on the left. 4-P-FL-C-W-CL

Please enter your question: submit

Last Updated - Tue May 13 15:34:53 EST 2003

Although Jose Hernandez-Orallo is hosting this page and has made some slight modifications over the original page and program, all the material and program in this page was made made by Pritika Sanghi.
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Universality probab'ﬂity of a preﬁx—t‘ree machine

BY GEORGE BARMPM.\AS‘-* AND DAVID L: DowE”

15tate Key LaboratoT¥ of Computer Science, Institute of Software:
Chinese Academy of Sciences: PO Boz 8718, Beijing 100190,
People’s Republic of China
2§ chool of Computer Science and Software Engineering: Clayton School
of LT Monash University: Clayton, Victoria 3800, Australia

We study the notion of universality pmbab'ﬂ'\ty of 2 universal preﬁx—h‘ee machine, a8
lace. We show that it is random relative © the third iterate of

p lnt.rod\mion

One of the most jmportant discoveries of the twentieth century (especially on a
conceptual level) is the notion of the universal computer/that. is, & computer
that can simulate any other computer- Turing | famously gave an abstract

ex
umiversality- This notion turned out t0 play @ hmdamental role in the development
of computing poth on 2 pram,'\cal and on 2 theotet'\cal Jevel (see pavis (2; for
a oomprehens‘we Thistory of the universal computer in the twentieth century
First, it led to the realization that the construction of stored-progne™ computers
(i-e. computers which can store programs and data 10 uniform, 'mwrchangeable
way) 18 poss‘\b\e. This, in led to the development of the physical computer
al

asw t today, S! art g with the proto es in nd USA dunnie the
Gecond world d, it q i d to the developmen of a rich theory
of computations eavily Tests m b istence of ver: The
theory of complexity T ception

Progtam—siz.e complexity (also known a8 Kolmogoro¥ comp\exity) was
introduced by KolmogoroV 3) and golomonoff [4lasa measure of complexity for

= uthor for correspondence (bsrmpa\iss@gmai\.oom).

One contribution of18t0 8 Theme lssue “The foundations of computation: physics and mentality:
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“Hockey, or Watching the Daisies Grow,” drawn by Sara Turing and sent to

Miss Dunwall, matron at Hazelhurst School, in the spring of 1923. (King’s
College, Cambridge)
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This is the webpage of the project "Anytime Universal Intelligence" (anYnt).

* Funding Entity: MEC (Ministerio de Educacion y Ciencia), AYUDAS PARA LA REALIZACION ACCIONES COMPLEMENTARIAS DENTRO DEL PROGRAMA NACIONAL DE PROYECTOS DE
INVESTIGACION FUNDAMENTAL, PLAN NACIONAL DE I+D+i 2008-2011

e Type of Project: EXPLORA

j e Acceptance rate: 14 from 98 (14.2%) P

¢ Reference: TIN2009-06078-E/TIN

% e Period: September 2009 - December 2011

SUMMARY OF THE PROJECT:

Following ideas from the first intelligence definitions and tests based on Algorithmic Information Theory [Dowe and Hajek 1997] [Hernandez-Orallo 2000a] [Legg and Hutter 2007], we face the challenge of
constructing the first universal, formal, but at the same time practical, intelligence test. The key issue is the notion of "anytime" test, which will allow a quick convergence of the test to the subject's level of

intelligence and a progressively better assessment the more time we provide. If we succeed, science will be able to measure intelligence of higher animals (e.g. apes), humans and machines in a universal and
practical way.

WORKING TEAM:

¢ José Hernandez-Orallo, Associate Professor (T.U.), Departamento de Sistemas Informaticos y Computacion, Universitat Politécnica de Valencia, Spain.

e David L. Dowe, Associate Professor, Clayton School of Information Technology, Monash University, Australia.

¢ Maria-Victoria Herndndez-Lloreda, Associate Professor (T.U.), Departamento de Metodologia de las Ciencias del Comportamiento Universidad Complutense de Madrid, Spain.
e Sergio Espafa-Cubillo, Research Assistant, Departamento de Sistemas Informaticos y Computacién, Universitat Politécnica de Valéncia, Spain.

¢ Javier Insa-Cabrera, Research Assistant, Departamento de Sistemas Informaticos y Computacién, Universitat Politécnica de Valéncia, Spain.

FULL DESCRIPTION OF THE PROJECT:

A full description of the project (as of its original proposal in March 2009) can be found here.

REPORTS AND PAPERS INSIDE THE PROJECT:

¢ J. Hernandez-Orallo, D.L. Dowe "Measuring Universal Intelligence: Towards an Anytime Intelligence Test", Artificial Intelligence, 2010. ISSN 0004-3702, DOI: 10.1016/j.artint.2010.09.006: This paper
sets up the theoretical framework

. (Some errata) (Preprint version (as of July 2010, *not* the final version)) (Slides of a 30" presentation)
¢ J. Hernandez-Orallo "A (hopefully) Unbiased Universal Environment Class for Measuring Intelligence of Biological and Artificial Systems (EXTENDED VERSION)", 2010 (abridged version in AGI'2010,
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Towards a universal intelligence test

Evaluating intelligence. Some issues:

Harder the less we know about the
examinee.

Harder if the examinee does not know it is
a test.

Harder if evaluation is not interactive
(static vs. dynamic).

Harder if examiner is not adaptive.




Towards a universal intelligence test

State of the art: different subjects, different tests.

IQ tests:

Human-specific tests. Natural language
assumed.

The examinees know it is a test.
Generally non-interactive.

Generally non-adaptive (pre-designed
set of exercises)

Other tests exist (interviews, C.A.T.)

[

Turing test:
Held in a human natural language.
The examinees ‘know’ it is a test.
Interactive.
Adaptive.

Other task-specific tests exist.
Robotics, games, machine learning.

%

Children’s intelligence evaluation:

Perception and action abilities assumed.

The examinees do not know it is a test.
Rewards are used.

Interactive.

Frequently non-adaptive (pre-designed
set of exercises).

Animal intelligence evaluation:

Perception and action abilities assumed.

The examinees do not know it is a test.
Rewards are used.

Interactive.

Generally non-adaptive (pre-designed
set of exercises).




Towards a universal intelligence test

Can we construct a test for all of them?
” Without knowledge about the examinee,
2 Derived from computational principles,
«ﬁ Non-biased (species, culture, language, etc.)
ﬁ No human intervention,

/i\ Producing a score,

Meaningful,

l Practical, and
Anytime.
|s this possible?

No previous measurement or test of intelligence
presented to date fulfils all of these requirements.



Towards a universal intelligence test

Project: an¥nt (Anytime Universal Intelligence)

> J | J
c ~Ncir 11NV ac/Nnrny//anyy/ Nt/
~ - | LIV =25/ 0))WV/ -l 111/
i J e« /) AN V. N 2 NI V/CALIYIIU

Any kind of system (biological, non-biological, human)
Any system now or in the future.

Any moment in its development (child, adult).

Any degree of intelligence.

Any speed.

Evaluation can be stopped at any time.




Precedents

Turing Test (Turing 1950): anytime and adaptive.

A TURING TEST SETTING

HUMAN
PARTICIPANT
INTERROGATOR
(EVALUATOR) COMPUTER-BASED
PARTICIPANT

It is a test of humanity, and needs human intervention.

Not actually conceived to be a practical test to measure intelligence
up to and beyond human intelligence.
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Precedents

Tests based on Kolmogorov Complexity (compression-extended
Turing Tests, Dowe 1998) (C-test, Hernandez-Orallo 1998). Very
much like 1Q tests, but formal and well-grounded.

Exercises (series) are not arbitrarily chosen.
They are drawn and constructed from a universal distribution:

k=9 : a.d.9. - Answer : m
k=12 3 a.8,2.€V.8,X, ... Answer : g
k=14 : c,a,b,d,b,c,c,e,c,d,... Answer:d

Fig. 2. Examples of series of Kt complexity 9, 12, and 14 used in the C-test [7].

However, some relatively simple agents can cheat on them (Sanghi
and Dowe 2003) and they are static (no planning abilities are
required).



Precedents

Captchas (von Ahn, Blum and Langford 2002): quick and practical,
but strongly biased. They soon become obsolete.

Tagetugchatictads Rau sos INihe prefrednoiow
HUMANS AND

fébaclr 6 AUTOMATICALLY

= ¥
b g

A strong impact in real applications and in the scientific community.
But...

They are not conceived to evaluate intelligence, but to tell humans and
machines apart at the current state of Al technology.

It is widely recognised that CAPTCHASs will not work in the future.

Letters are not case-sensitive S




Precedents

Universal Intelligence (Legg and Hutter 2007): an interactive
extension to C-tests from sequences to environments.

ror. oy 3001 S oo 57)
p= =3

=i

= performance over a universal distribution of environments.

Obvious Problems:
U is a choice which defines the environment class.
The probability distribution is not computable.
There are two infinite sums (number of environments and interactions).
Time/speed is not considered for the environment or for the agent.

Other less obvious problems.

10



Precedents

A definition of intelligence does not ensure an intelligence test.

Table 2
Intelligence tests in passive and active environments (clarification).
Universal agent Universal definition Universal test
Passive environment Solomonoff Comprehension ability  C-test [6],
prediction based on C-test [7], induction-enhanced
inductive ability luring test |3]
Active environment AIXI Universal intelligence ?

The C-test used Solomonoff’s theory of inductive inference (predictive
learning) to define an inductive inference test.

Universal intelligence provides a definition which adds interaction and the
notion of “planning” to the formula (so intelligence = learning + planning).

For “Universal Intelligence” we will have to “redefine” it, and then to think about
how to use it to construct a feasible test.

11



Addressing the problems of universal intelligence

On the difficulty of environments:
Very simple environments are given a very high probability

Definition 2 (Kolmogorov complexity ). Definition 3 (Universal distribution ).

Ky(x):= min I(p) i g )
’ p such that U(p)=x (P pU()\) =2

Most of the score will come from very simple environments.

1 E.g. The 256 environments with K < 8 accumulate a probability
of 0.996 (and hence weight, i.e., score) in the definition.

o0

T(N.U):=Zpu(u)-V[f

=i

Since we don’t have any information about the examinee,
we cannot set any limit (or soften the distribution).

one solution is to make the test adaptive.



Addressing the problems of universal intelligence

Selecting discriminative environments:
Many environments will be completely useless to evaluate
intelligence, because:
I Rewards may be independent of agent actions.

_I There must be sequences of actions that lead to unrecoverable
“states”. We cannot assume environments to be ergodic.

_1 Some environments may be highly benevolent (high expected
rewards) and some others can be very malevolent (low
expected rewards).

We introduce two constraints on environments:

_I Environments must be reward-sensitive: an agent must be able
to influence rewards at any point.

_! Environments must be balanced: a random agent must have an
expected reward of O (with rewards ranging between -1 and 1).

13



Addressing the problems of universal intelligence

On practical interactions:

We have to consider that environments should react almost
immediately. We modify the universal distribution as follows:

Definition 9 (Kt complexity weighting interaction steps).

KtM (. n) == min {l(p) - Iog( max (Actime(U, p.am‘)))

p such that U(p)=pu 1 \ay:i.1<n

——e—

The use of a parameter n makes the definition computable.
From here, we re-define the distribution:
ptu(u) — 2—Kt$“"(;_1.n,~)
And now:

We create a finite sample of environments.
We also use a limited number of interactions for each environment.

14



Addressing the problems of universal intelligence

Time and intelligence:
We must consider fast but unintelligent agents as well as slow
and intelligent ones.
_| But we cannot make these two things independent.
Otherwise, intelligence would be computationally easier than it is.

A way to do that is to set a finite period of time for each
environment instead of a “number of interactions”.

_Speed will be important because it will increase both exploration
and exploitation possibilities.

_!In fact, agent’s speed will be very relevant.
_But, it is crucial to consider balanced environments.

15



Addressing the problems of universal intelligence

Reward aggregation:

Can we use RL aggregation measures such as accumulated
reward and general discounting?

I We show they present important caveats when measuring agents:
with a finite (previously unknown) period of time,
C1Why?

Given an evaluation time (, a fast agent could act randomly and get a good
accumulated score and then rest on its laurels.

These are called “stopping” policies in games.

We introduce [48] a new measure for aggregating rewards in a
given time (, where “discounting” is made to be robust to
delaying and stopping policies.

Definition 16 (Average reward with diminishing history ).

n* »
1 H.TT * tnr
|r::n—*k§_]rk where n* = nr(T

9 IT
Vi

16



An anytime test

Given all the previous constraints and modifications we
can give a definition, which is useful for a test.

Definition 17 (Universal intelligence considering time (finite set of reward-sensitive and balanced environments, finite number of
interactions, Kt™* complexity) with adjusted score and using physical time to limit interactions).

” 1

WU, mn,t):=— > Wit

( : i T) = E wll
JES

where S is a finite subset of m balanced environments that are also nj-actions reward-sensitive. S is extracted with
ph () =2 KT

The definition is parameterised by the number of
environments m and the time limit for each of them (.

The higher m and { are, the better the assessment is expected
to be.

For a new (unknown) agent, it is difficult to tell the appropriate
m and C.



An anytime test

Definition 18 (Anytime universal intelligence test taking time into account). We define T"(mr,U, H, ®) as the result of the
following algorithm, which can be stopped anytime:

1. ALGORITHM: Anytime Universal Intelligence Test
2. INPUTS: m (anagent), U (a universal machine), H (a complexity function),
® (testtime, not as a parameter if the test is stopped anytime)

3 OUTPUTS: a real number (approximation of the agent’s intelligence)

4 BEGIN

5 Y <0 (initial intelligence)

6. T < 1 microsecond (or any other small time value)

7 £ «1 (initial complexity)

8 Sused < ¥ (set of used environments, initially empty)
9. WHILE (TotalElapsedTime < &) DO

10. REPEAT

19 p < Choose(U . &, H, Syseq) (get a balanced, reward-sensitive environment with &£ — 1 << H < & notalready in S;504)
12 IF (NOT FDUND) THEN (all of them have been used already)
13. E<Et+1 (we increment complexity artificially)
14. ELSE

5 EREAK REPEAT {we can exit the loop and go on)

16. END IF

u By 4 END REPEAT

18. Reward < V ;f (ks (average reward until time-out T stops)
19. Y < T + Reward (adds the reward)

20. £ «— &+ & Reward/2 (updates the level according to reward)
27.. T<T+71/2 (increases time)

22. Sused < Susea U {14} (updates set of used environments)
23. END WHILE

24. T «<7/|Susedl (averages accumulated rewards)

25. RETURN T
26. END ALGORITHM



Instances and implementation

» Implementation of the anytime test requires:

To define an environment class U (e.g., a Turing-complete machine),
where all the environments are balanced and reward-sensitive (or
define a computable, preferably efficient, sieve to select them).

A complexity function (e.g., Ktmax)

» Several environment classes may determine general or specific
performance tests:

19

In [53] we have presented a Turing-complete environment class /A which
Is balanced and reward-sensitive .

Other specific classes can be used to evaluate subfields of Al:

If U is chosen to only comprise static environments, we can define a test to
evaluate performance on sequence prediction (for machine learning).

If U is chosen to be games (e.g. using the Game Description Language in the
AAAI General Game Playing Competition), we have a test to evaluate
performance on game playing.

Similar things can be done with the reinforcement learning competition, maze
learning, etc.



Conclusions and future work

Since the late 1990s, we have derived several general intelligence
tests and definitions with a precise mathematical formulation.

Algorithmic Information theory (a.k.a. Kolmogorov complexity) is the key for
doing that.

» The most important conclusions of this work are:

We have shaped the question of whether it is possible to construct an
intelligence test which is universal, formal, meaningful and anytime.
We have identified the most important problems for such a test:
the notion of environment complexity and an appropriate distribution,
the issue that many environments may be useless for evaluation (not discriminative),
a proper sample of environments and time slots for each environment,
computability and efficiency,
time and speed for both agent and environment,
evaluation (reward aggregation) in a finite period of time,
the choice of an unbiased environment.



Conclusions and future work

This proposal can obviously be refined and improved:

The use of balanced environments and the character of the anytime test
suggest that for many (Turing-complete) environment classes, the measure is
convergent, but this should be shown theoretically or experimentally.

Ktmax needs a parameter to be computable. Other variants might exist without
parameters (e.g., using the speed prior).

The probability of social environments (other intelligent agents inside) is
almost 0. A complexity measure including other agents could be explored.

» Implementation:

Currently implementing an approximation to the test using the environment
class A.

Also considering implementing an approximation using the GDL (Game
Description Language) as environment class.

» Experimentation:

On Al agents (e.g. RL Q learning, AIXI approximations, etc.), humans, non-
human animals, children.
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1 Introduction

Understanding what intelligence is (and is not) plays a erucial role in devel-
oping truly general mtelligent machines. Apart from the many informal defini-
tions from psychology, philosophy, biology, artificial intelligence and other disci-
plines (see an account i [16]). there have been some definitions which include
the notion of compression, Kolmogoroy Complexity or related concepts such as
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General Performance, General Distribution

Intelligence as performance in a wide range of tasks

Artificial (Specific) Intelligence focusses on specific tasks.

The development of successful agents in these domains usually entails a
specialised approach.

Problem repositories for each domain are used to evaluate these agents
or algorithms (pattern recognition, machine learning, games, natural
language, robotics, etc.).

There are very few cases in the literature where the set of problems is
obtained by a problem generator from a specific distribution.



General Performance, General Distribution

Artificial General Intelligence must focus on general
tasks.

We can construct a general set of tasks by aggregating several
problems which humans face everyday.

Arbitrary approach (how many of these, how many of those, ...)
Makes it difficult to know what “intelligence” really means.

But we can formally define a general distribution and generate
tasks or environments from it.



General Performance, General Distribution

Let us choose the most general one: a universal
distribution over tasks or environments.

— K (x)

pux) =2

Where K is a measure of complexity (Kolmogorov complexity, or any computable
approximation, Levin’s Kt, Schmidhuber’s Speed Prior, etc.)

This approach has been explored in many ways:
Compression-extended Turing Tests (Dowe & Hajek 1997a-b, 1998).
Formal definition of intelligence, C-test (Hernandez-Orallo 1998, 2000).

Compression tests (Mahoney't text compression test 1999, Jim Bowery’s
Cprize 2005, Hutter’s Prize, 2006).

Universal Intelligence (Legg & Hutter 2007).
Anytime Intelligence Tests (Hernandez-Orallo & Dowe 2010).



General Performance, General Distribution

A universal distribution.
Advantages:

We can assign probabilities to an infinite number of tasks.

Universal distributions “dominate” all other possible distributions.
Sound results (Solomonoff's theory of prediction, Hutter’s AlXI, etc.).
Simple environments frequent = Tasks easier to generate and use.

Disadvantages:

The arbitrary choice of the reference machine is still important.

! This can be minimised by using background knowledge or using simplest
UTMs (Wallace 2005, Dowe 2008a).

Any environment of interest (e.g. multi-agent system) has a very low
probability for almost every reference machine.
| Performance in social, natural environments, including other (intelligent)

agents will not be measured.
6



Generating more social, ‘'natural” environments

But intelligence is all about social cognition!

The Social Cognition / Cultural Intelligence Hypothesis
[Herrmann et al. 2007]

Alternative proposals:
More realistic (but simplified) worlds, not using a universal distribution:
Social, natural, embodied environments... (e.g. AGI preschool [Goertzel 2009])

Choose a very particular reference machine, keeping a universal
distribution:

Games (Hernandez-Orallo & Dowe 2010).
“Alter” a universal distribution:

Include other agents.
Evolve the distribution.



Darwin-Wallace Distribution

» We define a distribution over multi-agent environments (not including

the agents):
pe(p) = 27K

» We define a distribution over agents (a “mind distribution”):
.— 9— Ky
pA(ﬂ') .= 9 Kug (m)
We assume all the agents are physically equal.

This is important and very different to natural evolution.
We only care about their “minds”.

» We combine these two distributions...



Darwin-Wallace Distribution

» The probability of the start-up multi-agent environment o is:

ps(0) = ps((i, 1, T2, ..., W) i= PE(1L) X Hm(ﬁ-’)
J=1
And now we evolve this in the following way:
Agent survival depends on a function d, related to their average rewards.
Dead agents are replaced by new agents.

The environment can be replaced by any other environment in pg with a
rate of replacement of c.

Agents do not specialise in one environment. They adapt to changing environments.

» The Darwin-Wallace distribution for d, ¢ at iteration / is given by:

])d.(-.i((f) = 1),-((/1.#1,.’?2. ....7T,,,>) — I)E(ll) X H(I(d.(-.i)(ﬂj)
7=1

Where q(d,c,i) is the agent probability at iteration /.
9



Darwin-Wallace Distribution

What does this family of distributions mean?

10

It just assigns probabilities to multi-agent environments.

Complex agents with complex/adaptive behaviour are much more
likely in this distribution, for large values of |.
The distribution is completely different for low and high values of /.

Highly social agents may be unsuccessful in environments with very
simple agents, where co-operation and language are useless.
I As a single human on an island, in the Precambrian period or on Mars.

Social adaptability instead of adaptation to one single environment.

Previous definitions and tests of intelligence using
a universal distribution could be re-understood
with a Darwin-Wallace distribution.




Approximations

Appealing as an abstract concept.

Problems for using it in practice:

The definition is a product of other distributions, which are not
necessarily independent (it would require a normalisation).

The distribution is uncomputable (with K being Kolmogorov
Complexity) or clearly intractable using computable variants of K.

Some evolution “accelerators” have been ruled out (mutations, cross-
over, genotype, ...).
I We cannot wait some billion years.

But...

Nobody is saying that we have to wait until the
agents are “naturally” created by evolution.




Approximations

Approximation through testing:

Research-driven evolution instead of natural evolution.

Agents can be created artificially (by AGI researchers) but assessed
in an independent way.

The “intelligence”/"adaptability” of agents can be assessed for
different values of /.

We certify agents at lower levels of /, before including them in the
testbed.

» This (competitive) process can foster the development
of more and more (socially) intelligent systems.



Discussion

» The Darwin-Wallace distribution is not a distribution of “life forms”
-1 Adistribution of ‘life forms’ gives higher probability to bacteria and cockroaches.

» The Darwin-Wallace is a distribution of (social) “mind forms”.

There are three features which make this distinction:
i) Physical traits do not matter (no body).
Focus is placed on behaviour.
ii) There is no genotype, cross-over, mutation, etc.,
Selection does not work for genes or species, but for individuals.
iii) Environments are replaced.

Avoids specialisation in a single environment.

Instead, adaptability to a wide range of environments (i.e., intelligence) is the
only fitness function for selection.

13



Discussion

The Darwin-Wallace distribution assigns probabilities
to agents depending on their success on a variety of
environments with a variety of other agents.

» It relates intelligence to evolution, without abandoning the context of
universal distributions.

This, of course, raises more questions than it answers, but...

_!lt can help understand why universal distributions may be “too general” and
unrealistic for worlds where intelligence has developed.

_!It can help suggest ways to link intelligence definitions with evolution,
adversarial learning, competition and collaboration.

14



Thank you!

Some pointers:

Project: an¥nt (Anytime Universal Intelligence)
hittp://users.dsic.upv.es/proy/anynt/
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Measuring intelligence universally

Can we construct a ‘universal’ intelligence test?

Project: an¥nt (Anytime Universal Intelligence)

http://users.dsic.upv.es/proy/anynt

Any kind of system (biological, non-biological, human)
Any system now or in the future.

Any moment in its development (child, adult).

Any degree of intelligence.

Any speed.

Evaluation can be stopped at any time.




Precedents

A TURING TEST SETTING

Imitation Game “Turing Test” (Turing 1950):
It is a test of humanity, and needs human intervention.

Not actually conceived to be a practical test for
measuring intelligence up to and beyond human
intelligence. TERROGATOR QU ieea

IEVALUATOR) COMPUTER EASED
PARNICEANT

CAPTCHAs (von Ahn, Blum and Langford 2002):

Quick and practical, but strongly biased. TELLING
They evaluate specific tasks. COMPULERS

They are not conceived to evaluate intelligence, but to - R I
tell humans and machines apart at the current state of Smerees
Al technology.

Type the characters you see in the picture Delow

It is widely recognised that CAPTCHASs will not work in v
the future (they soon become obsolete). f‘é‘tﬁﬂ | |

)
&

abac]



Precedents

Tests based on Kolmogorov Complexity (compression-extended
Turing Tests, Dowe 1997a-b, 1998) (C-test, Hernandez-Orallo 1998).
Look like IQ tests, but formal and well-grounded.
Exercises (series) are not arbitrarily chosen.

They are drawn and constructed from a universal distribution, by setting
several ‘levels’ for k:

k=9 :a,d9,j,... Answer : m
=12 ¢ 88,2, 6Y¥:8:% Answer : g
k=14 : c,a,.b,d,b,c,c,e,c,d,... Answer:d

However...

Some relatively simple algorithms perform well in IQ-like tests (Sanghi and
Dowe 2003).

They are static (no planning abilities are required).



Precedents

Universal Intelligence (Legg and Hutter 2007): an interactive
extension to C-tests from sequences to environments.

|

00 - .
T U)=) pu(m)-Vi=) pulp)- E(Z"fﬁr)
i=1

=i =i

= performance over a universal distribution of environments.

Universal intelligence provides a definition which adds interaction and
the notion of “planning” to the formula (so intelligence = learning +

planning).
This makes this apparently different from an 1Q (static) test.

6



Precedents

» A definition of intelligence does not ensure an intelligence test.

Anytime Intelligence Test (Hernandez-Orallo and Dowe 2010):

An interactive setting following (Legg and Hutter 2007) which addresses:
_Ilssues about the difficulty of environments.
! The definition of discriminative environments.
I Finite samples and (practical) finite interactions.
_ 1 Time (speed) of agents and environments.
! Reward aggregation, convergence issues.
_I Anytime and adaptive application.

» An environment class A (Hernandez-Orallo 2010) (AGI-2010).

In this work we perform an implementation of the test and
we evaluate humans and a reinforcement learning
algorithm with it, as a proof of concept.




Test setting and administration

» Implementation of the environment class :

Spaces are defined as fully connected graphs.
Actions are the arrows in the graphs.
Observations are the ‘contents’ of each edge/cell in the graph.

I r r r
r

IQBQ\_/‘\_/OI\_/\_/

I I I I

Agents can perform actions inside the space.

Rewards:

Two special agents Good (®) and Evil (&), which are responsible for the rewards.
Symmetric behaviour, to ensure balancedness.



Test setting and administration

» We randomly generated only 7 environments for the test:

Different topologies and sizes for the patterns of the agents Good
and Evil (which provide rewards).

Different lengths for each session (exercise) accordingly to the
number of cells and the size of the patterns.

Env. # |No. cells (n.)[No. steps (m)|pstop
1 3 20) 1/3
2 4 30 1/4
3 5 10 1/5
1 6 50 1/6
5 7 60 1/7
§ 8 70 1/8
7 9 80 1/9

TOTAL - 350 -

The goal was to allow for a feasible administration for humans in
about 20-30 minutes.

9



Agents and interfaces

» An Al agent: Q-learning
A simple choice. A well-known algorithm.

» A biological agent: humans
20 humans were used in the experiment

A specific interface was developed for them, while the rest of the
setting was equal for both types of agents.

3l [
o

[ / . / /' - // - L~ - /1— - ] - ]
http://users.dsic.upv.es/proy/anynt/human | /test.html



Results

Experiments were paired.
Results show that performance is fairly similar.

Q-learning Human

15
15

Density
Densty
1.0
1
J///

1.0

0.0
|
0.0
l
l

Rewards Rewards

I



Analysis of the effect of complexity :

Complexity is approximated by using LZ (Lempel-Ziv)
coding to the string which defines the environment.

Average Reward
-0 5

-1.0

33 44 55 66

¢

T T T

* Human
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| I R
77 88 99

Average Reward

o
-

0
=]

-1.0

i‘x_
*u\h
2
RN
kil %
x *
: XRLRE
xGAX 2% x &
_ag%'ii
.*i?}' ¢ g
W .':“-'
o .
% Human
| | | |
15 20 25 30
Complaxity

Lower variance for exercises with higher complexity.

Slight inverse correlation with complexity (difficulty T, reward ).




Discussion

Not many studies comparing human performance and
machine performance on non-specific tasks.

The environment class here has not been designed to be
anthropomorphic.

The Al agent (Q-learning) has not been designed to address
this problem.

The results are consistent with the C-test (Hernandez-Orallo
1998) and with the results in (Sanghi & Dowe 2003), where a
simple algorithm is competitive in regular |Q tests.



Discussion

The results show this is not a universal intelligence test

The use of an interactive test has not changed the picture from the results
in the C-test.

» What may be wrong?

A problem of the current implementation. Many simplifications made.

A problem of the environment class. Both this and the C-test used an
inappropriate reference machine.

A problem of the environment distribution.

A problem with the interfaces, making the problem very difficult for
humans.

A problem of the theory.
Intelligence cannot be measured universally.
Intelligence is factorial. Test must account for more factors.

Using algorithmic information theory to precisely define and evaluate intelligence
may be insufficient.




Thank you!

Some pointers:
Project: an¥nt (Anytime Universal Intelligence)

|
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Have fun with the test
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The comparative approach

Intelligence Evaluation:

* Intelligence has been evaluated by humans in all periods of history.

* Only in the XXth century, this problem has been addressed scientifically:
* Human intelligence evaluation.
* Animal intelligence evaluation.

What about machine intelligence evaluation?

Turing Test:

* The imitation game was not really conceived by Turing as a fest, but as
a compelling argument.

* Problems of using the imitation game as a test of intelligence.

Is there an alternative principled way of measuring intelligence?

79



Computational measurement of intelligence

During the past 15 years, there has been a discreet line of
research advocating for a formal, computational approach
to intelligence evaluation.

e |ssues:

e Humans cannot be used as a reference.

— No arbitrary reference is chosen. Otherwise, comparative approaches
would become circular.

* Intelligence is a gradual (and most possibly factorial) thing.
— It must be graded accordingly.

* Intelligence as performance on a diverse tasks and environments.
— Need to define these tasks and environments.

* The difficulty of tasks/environments must be assessed.
— Not on populations (psychometrics), but from computational principles.
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Computational measurement of intelligence

Problems this line of research is facing at the moment.

* Most approaches are based on tasks/environments which

represent patterns that have to be discovered and correctly
employed.

* These tasks/environments are not representative of what an
intelligence being may face during its life.

(Social) intelligence is the ability to perform well in an
environment full of other agents of similar intelligence

This idea prompted the definition of a different distribution of
environments:

* Darwin-Wallace distribution (Hernandez-Orallo et al. 2011):
environments with intelligent systems have higher probability.
* Itis a recursive (but not circular) distribution.

* While resembles artificial evolution, it is guided and controlled by
intelligence tests, rather than selection due to other kind of fitness. g,



Reunion: bridging antagonistic views

The setting of the Darwin-Wallace distribution suggests:

* Comparative approaches may not only be useful but
necessary.

* The Turing Test might be more related to social intelligence
than other kinds of intelligence.

This motivates a reunion between the line of research
based on computational, information-based approaches to
intelligence measures with the Turing Test.

* However, this reunion has to be made without renouncing to

one of the premises of our research: the elimination of the
human reference.

Use (Turing) machines, and not humans, as references.
Make these references meaningful by recursion
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Generalisation of the Turing Test

Definition A general Turing Test is defined as a tuple (J, R, E,G;,Gr,Gg, Dy, Dgr,Dg,I),

where:
e The reference subject R is randomly chosen from a distribution Dy and follows goal G .
e The evaluee subject F 1s randomly chosen from a distribution Dg and follows goal G .
e The interrogator/judge .J is randomly chosen from a distribution D; and follows goal G;.

e There is an interaction protocol I which is executed until a condition is met (a given
number of steps, a limited time or a certainty of the result).

e The test returns an assessment for FE'.

83



Turing Test for Turing Machines

The Turing Test makes some particular choices:

 Takes the human reference from a distribution: adult homo
sapiens.

* Takes the judges from a distribution (also adult homo
sapiens) but they are also instructed on how to evaluate.

But other choices can be made.

* Informally?

* A Turing Test for Nobel laureates, for children, for dogs or other
populations?

* Formally? Generally?
* Nothing is more formal and general than a Turing Machine.

84



The Turing Test for Turing Machines

Y Interaction |

Subject A

Reference

Subject A
Distribution D



The Turing Test for Turing Machines

The simplest adversarial Turing Test:

* Symmetric roles:
* Evaluee B tries to imitate A. It plays the predictor role.
* Reference A tries to evade B. It plays the evader role.

* This setting is exactly the matching pennies problem.
* Predictors win when both coins are on the same side.
 Evaders win when both coins show different sides.

Player 2
Heads Tails
Heads 1,-1 -1,1
Tails -1,1 1,-1

Player 1
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The Turing Test for Turing Machines

Interestingly,

* Matching pennies was proposed as an intelligence test
(adversarial games) (Hibbard 2008, 2011).

The distribution of machines D is crucial.
* Machines with very low complexity (repetitive) are easy to
identify.
* Machines with random outputs have very high complexity and
are impossible to identify (a tie is the expected value).

Can we derive a more realistic distribution?
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Recursive TT for TMs

The Turing Test can start with a base distribution for the
reference machines.
* Whenever we start giving scores to some machines, we can
start updating the distribution.

* Machines which perform well will get higher probability.
* Machines which perform badly will get lower probability.

* By doing this process recursively:
* We get a distribution with different levels of difficulties.
* |t is meaningful for some instances, e.g., matching pennies.
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Recursive TT for TMs

Definition  The recursive imitation game for Turing machines is
defined as a tuple (D, J, I) where tests and distributions are ob-
tained as follows:

1.
2.
3.

AN

Set D() = D and 1 = ().
For each agent B in a sufficiently large set of TMs
Apply a sufficiently large set of instances of definition 1 with
parameters {D;, B, J, I).
B’s intelligence at degree i is averaged from this sample of
imitation tests.
End for
Set1 =1+ 1
Calculate a new distribution D; where each TM has a probability

which is directly related to its intelligence at level © — 1.
Go to 2
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Recursive TT for TMs

The previous definition has many issues.
* Divergent?
* Intractable.

But still useful conceptually.

In practice, it can be substituted by a (sampling) ranking system:
* (e.g.) Elo’s rating system in chess.

Given an original distribution, we can update the distribution by
randomly choosing pairs and updating the probability.
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Possible resulting distributions

Depending on the agents and the game where they are
evaluated, the resulting distribution can be different.

0.5 1

0.9
0.4 ~—_ 0.8
0.7
0.3 —Agent 1 0.6 —Agent 1
_Agent 2 05 —Agent 2
0.2 Agent 3 ’ Agent 3
’ —Agent 4 04 —Agent4
0.3
0.1 0.2
0.1
0 0
Do D10 D20 D30

DO D10 D20 D30
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Conclusions

The notion of Turing Test with Turing Machines is introduced
as a way:

* To getrid of the human reference in the tests.

* To see very simple social intelligence tests, mainly adversarial.

The idea of making it recursive tries to:
* escape from the universal distribution.
* derive a different notion of difficulty.

The setting is still too simple to make a feasible test, but it is
already helpful to:

* Bridge the (until now) antagonistic views of intelligence testing using the
Turing Test or using computational formal approaches using Kolmogorov
Complexity, MML, etc.

* Link intelligence testing with (evolutionary) game theory.
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The comparative approach

* Intelligence Evaluation:

— Intelligence has been evaluated by humans in all periods of history.

— Only in the XXth century, this problem has been addressed scientifically:.

* Human intelligence evaluation is performed and studied in psychometrics
and related disciplines.

* Animal intelligence evaluation is performed and studied in comparative
cognition and related disciplines.

What about machine intelligence evaluation?

— We only have partial approaches in some Al competitions
and, of course, some variants and incarnations of the Turing
Test.
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The comparative approach

* Turing Test:

— The imitation game was not really
conceived by Turing as a test, but as a
compelling argument.

HUMAN
PARTICIPANT
INTERROGATOR

(EVALUATOR) COMPUTER-BASED
PARTICIPANT

» Problems of using the imitation game as a test of intelligence.
Humanity (and not intelligence) is taken as a reference.
Evaluation is subjective: evaluators are also humans.
Too focussed on (teletype) dialogue.
Not based on reproducible tasks but on particular, unrepeatable conversations.
Not really scalable far below or beyond human intelligence.
Not clear how it behaves for collective intelligence (with one teletype communicator).

Is there an alternative principled way of measuring intelligence?
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Computational measurement of
intelligence

* During the past 15 years, there has been a discreet line
of research advocating for a formal, computational
approach to intelligence evaluation.

— Issues:

e Humans cannot be used as a reference.

— No arbitrary reference is chosen. Otherwise, comparative approaches
would become circular.

* Intelligence is a gradual (and most possibly factorial) thing.
— It must be graded accordingly.

* Intelligence as performance on a diverse tasks and environments.
— Need to define these tasks and environments.

* The difficulty of tasks/environments must be assessed.
— Not on populations (psychometrics), but from computational principles.
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Computational measurement of
intelligence

Problems this line of research is facing at the moment.

— Most approaches are based on tasks/environments which
represent patterns that have to be discovered and correctly
employed.

— These tasks/environments are not representative of what an
intelligence being may face during its life.

— Environments lack on evaluate some skills that discriminates better
between different systems.

(Social) intelligence is the ability to perform well in an
environment full of other agents of similar intelligence
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Computational measurement of
intelligence

* This definition of Social intelligence prompted the
definition of a different distribution of environments:
— Darwin-Wallace distribution (Hernandez-Orallo et al. 2011):

environments with intelligent systems have higher probability.

* It is a recursive (but not circular) distribution.

* Use agents’ intelligence to create new social
environments.

* While resembles artificial evolution, it is guided
and controlled by intelligence tests, rather than
selection due to other kind of fithess.
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Reunion: bridging antagonistic views

* The setting of the Darwin-Wallace distribution suggests:

— Comparative approaches may not only be useful but
necessary.

— The Turing Test might be more related to social intelligence
than other kinds of intelligence.

* This motivates a reunion between the line of research
based on computational, information-based approaches
to intelligence measures with the Turing Test.

— However, this reunion has to be made without renouncing to
one of the premises of our research: the elimination of the

l"\l LN N Pf\'Ff\Pf\hf\f\

Use (Turing) machines, and not humans, as references.
Make these references meaningful by recursion

100



Base case: the TT for TMs

* The Turing Test makes some particular choices:
— Takes the human reference from a distribution: adult homo
sapiens.

— Takes the judges from a distribution (also adult homo
sapiens) but they are also instructed on how to evaluate.

 But other choices can be made.

— Informally?

* A Turing Test for Nobel laureates, for children, for dogs or other
populations?

— Formally? Generally?
* Nothing is more formal and general than a Turing Machine.
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Base case: the TT for TMs

Let us generalise the TT with TMs:

Definition 1 The imitation game for Turing machines is defined as
atuple (D, B,C.T)

e The reference subject A is randomly taken as a TM using a distri-
bution D.

e Subject B (the evaluee) tries to emulate A.

e The similarity between A and B is ‘judged’ by a criterion or judge
C' through some kind of interaction protocol I. The test returns this
similarity.
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Base case: the TT for TMs

— The use of Turing machines for the reference is relevant:

* We can actually define formal distributions on them (this cannot be
done for humans, or animals or “agents”).

— It is perhaps a convenience for the judge.
* Any formal mechanism would suffice.

— It is not exactly a generalisation, because in the TT there is
an external reference.

* the judge compares both subjects with his/her knowledge about
human behaviour.
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Base case: the TT for TMs

Reference

Distribution D Subject A
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Base case: the TT for TMs

Interaction |

Reference Evaluee B
Subject A

Distribution D

Judge C

— The C-test can be seen as a special case of the TT for TMs:
* The reference machines have no input (they are static)

* The distribution gives high probability to sequences of a range of difficulty
(Levin's Kt complexity).

* The judges/evaluation just look for an exact matching between the
reference outputs and the evaluee.
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Base case: the TT for TMs

Interaction |

Reference Evaluee B
Subject A

Distribution D

Judge C

— Legg & Hutter’s Universal Intelligence can be seen as a special case of the
TT for TMs:

* The reference machines are interactive and issue rewards.
* The distribution gives high probability to TMs with low Kolmogorov complexity.
* The judges/evaluation just look for high rewards.
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Base case: the TT for TMs

e Other more ‘orthodox’ versions could be defined:

— Question-answer setting:

* Judges just issue questions from a distribution (they are string-
generating TM).

* Reference Ais another TM which receives the input and issues an
output.

* The evaluee learns from the input-outputs over A and tries to
imitate.

— However, the original version of the TT was adversarial.

* Reference subjects were instructed to play against the evaluee (and
vice versa). Both wanted to be selected as authentic.
— However, we do not have an external reference.
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Base case: the TT for TMs

* The simplest adversarial Turing Test:

— Symmetric roles:

* Evaluee B tries to imitate A. It plays the predictor role.
* Reference A tries to evade B. It plays the evader role.

— This setting is exactly the matching pennies problem.
* Predictors win when both coins are on the same side.
 Evaders win when both coins show different sides.

Player 1

Player 2

Heads

Tails

Heads

1,-1

-1,1

Tails

-1,1

1,-1
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Base case: the TT for TMs

* Interestingly,

— Matching pennies was proposed as an intelligence test (adversarial
games) (Hibbard 2008, 2011).

* Again, the distribution of machines D is crucial.
— Machines with very low complexity (repetitive) are easy to identify.

— Machines with random outputs have very high complexity and are
impossible to identify (a tie is the expected value).

Can we derive a more realistic distribution?
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Recursive TT for TMs

e The TT for TMs can start with a base distribution for the

reference machines.

— Whenever we start giving scores to some machines, we can start
updating the distribution.
* Machines which perform well will get higher probability.
* Machines which perform badly will get lower probability.
— By doing this process recursively:
* We get a controlled version of the Darwin-Wallace distribution.
* It is meaningful for some instances, e.g., matching pennies.
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Recursive TT for TMs

Definition 2 The recursive imitation game for Turing machines is
defined as a tuple (D, C\, I) where tests and distributions are ob-

tained as follows:

[. Set Do = D and 1 = (.

2. For each agent B in a sufficiently large set of TMs

3. Apply a sufficiently large set of instances of definition 1 with
parameters (D;, B, C, I).

4. B’s intelligence at degree 1 is averaged from this sample of
imitation tests.

5. End for

6. Set1 =1+ 1

7. Calculate a new distribution D; where each TM has a probability

which is directly related to its intelligence at level 1 — 1.

S. Goto?2
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Recursive TT for TMs

The previous definition has many issues.
— Divergent?

— Intractable.

But still useful conceptually.

In practice, it can be substituted by a (sampling) ranking system:
* (e.g.) Elo’s rating system in chess.

Given an original distribution, we can update the distribution by
randomly choosing pairs and updating the probability.
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Possible resulting distributions

* Depending on the agents and the game where they are
evaluated, the resulting distribution can be different.
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0
DO D10 D20 D30

DO D10 D20 D30
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Discussion

* The notion of Turing Test with Turing Machines is
iIntroduced as a way:

— To get rid of the human reference in the tests.

— To see very simple social intelligence tests, mainly
adversarial.

* The idea of making it recursive tries to:
— escape from the universal distribution.
— derive a different notion of difficulty.
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Discussion

The setting is still too simple to make a feasible test, but
it is already helpful to:

— Bridge the (until now) antagonistic views of intelligence testing
using the Turing Test or using computational formal approaches
using Kolmogorov Complexity, MML, etc.

— Link intelligence testing with (evolutionary) game theory.
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Thank youl!

Some pointers:
* Project: anYnt (Anytime Universal Intelligence)

http://users.dsic.upv.es/proy/anynt/
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