

8

Morphogenesis

Source: Google images

Source:

The mathematics of nature at the Alan Turing centenary
S. Barry Cooper and Philip K. Maini

Alan Turing
University of Cambridge
Computer Science
No verified email

Citation indices					Citations to my articles						
		All	Since 2007	1424						0.00	III.
Ci	tations	19817	7788							111111	Ш
h-	index	24	18						muttill		Ш
i1	0-index	35	22	0 ¹	973	1982		1992	200	2	2012
Select: All, None Export Show: 20											Next >
	Title / A	uthor								Cited by	Year
	The chemical basis of morphogenesis AM Turing Philosophical Transactions of the Royal Society of London. Series B										1952
	Computing machinery and intelligence AM Turing Mind 59 (236), 433-460										1950
	(1936) A Turing		e numbers, v	with ar	n applio	cation to the	ne Entsc	heidungsį	problem	5440	2004

Alan Turing University of Cambridge Computer Science No verified email

Search Authors

Get my own profile - Help

[PDF] from usp.br

« Back to list

Authors

Export

The chemical basis of morphogenesis Title

Alan Mathison Turing

Publication date 1952/8/14

Journal name Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences

Volume 237 Issue 641 37-72 Pages

Publisher The Royal Society

Description Abstract It is suggested that a system of chemical substances, called morphogens, reacting

> together and diffusing through a tissue, is adequate to account for the main phenomena of morphogenesis. Such a system, although it may originally be quite homogeneous, may later develop a pattern or structure due to an instability of the homogeneous equilibrium, which is triggered off by random disturbances. Such reaction-diffusion systems are considered in some detail in the case of an isolated ring of cells, a mathematically convenient, though ...

Total citations

Cited by 6003

Citations per year

Scholar articles

The chemical basis of morphogenesis

AM Turing - Philosophical Transactions of the Royal Society of ..., 1952

Cited by 6003 - Related articles - All 75 versions

« Back to list | Export

The Chemical Basis of Morphogenesis

A. M. Turing

Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, Vol. 237, No. 641. (Aug. 14, 1952), pp. 37-72.

- What might cause phenomenon of developmental patterns such as phyllotaxis.
- Turing proposed a theory of developmental pattern formation.

Reacting chemicals

Morphogens as chemical pre-patterns

It is suggested that a system of chemical substances, called morphogens, reacting together and diffusing through a tissue, is adequate to account for the main phenomena of morphogenesis.

Turing's main hypothesis was that the resulting gradient of chemical concentrations could cue differential cell growth and result in pattern formation.

Diffusion-driven instability

• A system of chemicals which is stable in the absence of diffusion becomes unstable in the presence of diffusion.

A Reaction-diffusion Model

$$\frac{\partial u}{\partial t} = \gamma f(u, v) + D_u \nabla^2 u,$$

$$\frac{\partial v}{\partial t} = \gamma g(u, v) + D_v \nabla^2 v,$$

$$\frac{\partial f}{\partial u} + \frac{\partial g}{\partial v} < 0;$$

$$\frac{\partial f}{\partial u} \frac{\partial g}{\partial v} - \frac{\partial f}{\partial v} \frac{\partial g}{\partial u} > 0;$$

$$D_{u} \frac{\partial g}{\partial v} + D_{v} \frac{\partial f}{\partial u} > 0;$$

$$D_{u} \frac{\partial g}{\partial v} + D_{v} \frac{\partial f}{\partial u} > \sqrt{D_{u} D_{v} \left(\frac{\partial f}{\partial u} \frac{\partial g}{\partial v} - \frac{\partial f}{\partial v} \frac{\partial g}{\partial u}\right)}$$

A stability analysis of the steady states of the kinetics shows that to generate spatial patterns in u and v, it is necessary, among other things, that the inhibitor have a higher diffusion rate than the activator, that is $D_v > D_u$;

J.D. Murray's Fire and Grasshopper metaphor

Source Philip Maini's talk on youtube: http://www.youtube.com/watch?v=pN8tVldm6QY

Basic principles behind patterning

Short-range activation gives long-range inhibition

Predictions from Turing's Model

 For Turing patterns to occur, the spatial domain should have a minimum size

 Complexity of the Turing patterns is dependent on the domain size.

Geometry of the spatial domain plays a big role

Source: Reaction-Diffusion Model as a Framework for Understanding Biological Pattern Formation Shigeru Kondo and Takashi Miura Science 329, 1616 (2010);

From: Reaction-Diffusion Model as a Framework for Understanding Biological Pattern Formation Shigeru Kondo and Takashi Miura Science 329, 1616 (2010);

How the Leopard got its spots?

Source: Google images

$$\frac{\partial u}{\partial t} = \gamma f(u, v) + D_u \nabla^2 u,$$

$$\frac{\partial v}{\partial t} = \gamma g(u, v) + D_v \nabla^2 v,$$

$$f(u,v) = a - u - h(u,v),$$

$$g(u,v) = \alpha(b-v) - h(u,v),$$

$$h(u,v) = \frac{\rho uv}{1 + u + Ku^2},$$

Source: J. D. Murray's article, http://www.ams.org/notices/201206/rtx120600785p.pdf

Spotted animals can have striped tails but not the other way round

"All Models are wrong... but some are useful" – George Box

Source Philip Maini's talk on youtube: http://www.youtube.com/watch?v=pN8tVldm6QY

Source: J. D. Murray's article, http://www.ams.org/notices/201206/rtx120600785p.pdf

Source: J. D. Murray's article, http://www.ams.org/notices/201206/rtx120600785p.pdf

Source Philip Maini's talk on youtube: http://www.youtube.com/watch?v=pN8tVldm6QY

Conclusions

 Turing's paper on morphogenesis revolutionized biology

Still remains a seminal work in several areas

Inspired an enormous amount of mathematics.