Turing Machines

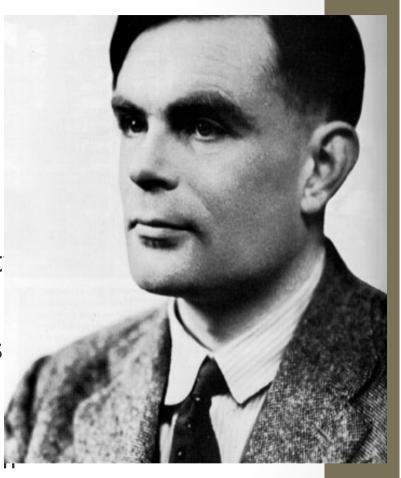
David Albrecht

Early Computers

Early NACA human computers at work (1949)

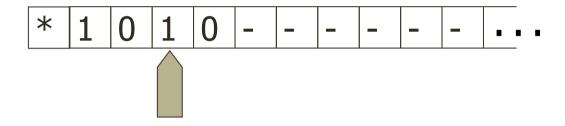
Effective Process

- Can be done with pencil and paper.
- Is a finite set of instructions.
- Demands neither insight or ingenuit
- Will definitely work without error.
- Produces in a finite number of steps either:
 - A final result, or
 - If the result is a sequence, each symbol is the sequence.



Turing Machine

A tape and tape head.



- A Program
 - A sequence of instructions

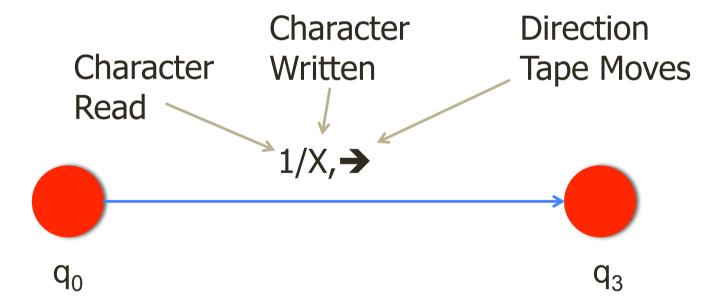
The Tape

* 1 0 1 0 - - - - - - - - Rest of tape is blanks

- Tape is infinite in one direction.
- Tape head can move left and right.
- Tape head can read and write characters.

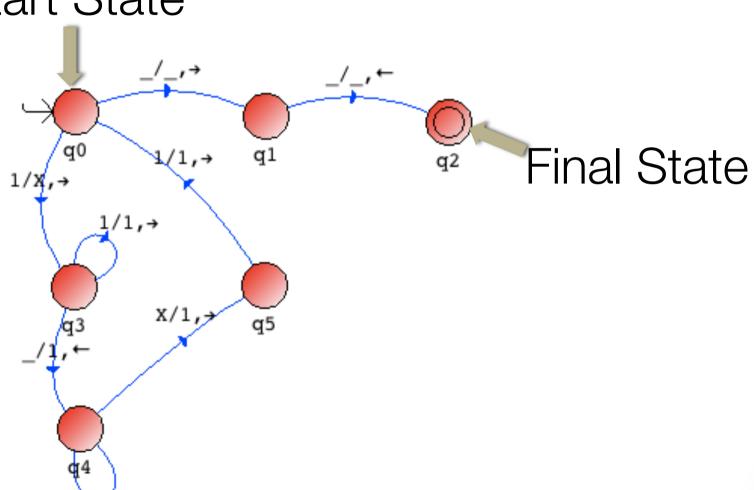
Instructions

If (in state q_0 and reading 1) then write X in the current square move right one square on the tape goto state q_3



Program

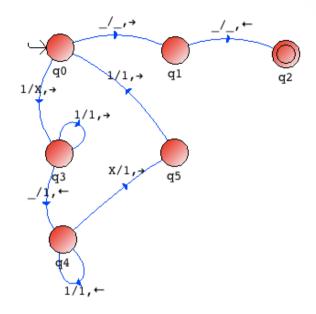
Start State



Representation of Integers

Integer	Representation
0	Blank Tape
1	1
2	11
3	111
4	1111
5	11111
6	111111
7	1111111
8	1111111

A Function



Input	Output
Blank Tape	Blank Tape
1	11
11	1111
11	1111
N	2N

$$F(N) = 2N$$

Turing-Church Thesis

Every effective procedure can be performed by a Turing Machine.

Assumptions

- _ will represent a blank
- We always start in state q0
- We always end in state q2
- We will assume that the tape head starts on the first square.
- Alphabet is: 0, 1, X, _

Representing Instructions

Current	Character	Character	Direction	Next
State	Read	Written	Таре	State
			Moves	

Represent as an

integer

Represent as an integer

Action/Character	Representation
Move Left	0
Move Right	1
0	000
1	001
_	010
X	011

Representation

Current State	Character Read	Character Written	Direction Tape Moves	New State	
q_0	_	_	→	q_1	01001011
q_0	1	X	→	q_3	0010111111
q_1	_	_	←	q_2	1010010011
q_3	1	1	→	q_3	1110010011111
q_3	_	1	←	q_4	11101000101111
q_4	1	1	←	q_4	111100100101111
q_4	Χ	1	→	q_5	1111011001111111
q_5	1	1	→	q_0	111110010011

Universal Turing Machine (UTM)

- A Turing Machine which can simulate the behaviour of any Turing Machine on any data.
- A UTM is a representation of the concept of a programmable computer.