

Turing and Ordinal Logic (Or "To Infinity and Beyond ...")

James Harland

School of Computer Science & IT, RMIT University james.harland@rmit.edu.au

Turing and Ordinal Logic

14th September, 2012

Turing at Princeton

- Arrived in September 1936
- Worked on type theory and group theory
- Spent June-September 1937 back in England
- Returned to Princeton in September 1937
- Procter Fellow (on \$2000 per year) (!)
- Church's PhD student (!!)
- Systems of Logic Based on Ordinals completed in May, 1938 (!!!)
- Returned to Cambridge in July, 1938

"Overcoming" Gödel's Incompleteness

For any logic L_1 : A_1 is true but unprovable in L_1 L_2 is $L_1 + A_1$ A_2 is true but unprovable in L_2 L_3 is $L_2 + A_2$ A_3 is true but unprovable in L_3 L_4 is $L_3 + A_3$...

``The situation is not quite so simple as is suggested by this crude argument" (first page of 68)

Turing and Ordinal Logic

14th September, 2012

Ordinal Logics

- In general, need to add an infinite number of axioms
- Create 'ordinal logics' in the same way as ordinal numbers
- Pass to the transfinite in order to obtain completeness
- (... lots of technicality omitted ...)
- Completeness obtained (for Π_1^0 statements)
- "Proofs" now not just 'mechanical'
- Need to recognise when a formula is an 'ordinal formula'
- This is at least as hard as Π_1^0 statements (!!)
- Trades 'mechanical proofs' for completeness
- Isolates where the 'non-mechanical' part is

Oracles

Oracle: Answer an unsolvable problem

o-machines: add this capability to Turing machines

- Provides computational conception of limit ordinal process
- Showed that the halting problem for o-machines cannot be solved by an o-machine
- Genesis of the idea of relative computability & generalised recursion theory

Formalising 'Intuition'

- Turing divided mathematical reasoning into ingenuity and intuition
- Ordinal logics formalise this distinction via ordinal notation or 'oracle'
- Extension of work on mechanising human reasoning
- Turing's most 'mainstream' work ??

14th September, 2012