
Autonomous Formation Selection For Ground Moving Multi-Robot
Systems

Shuang Yu1 and Jan Carlo Barca2

Abstract— Multi-robot systems have many useful real world
applications including disaster management, exploration and
surveying. Formation control is critical in these contexts as
the success of groups often depend on the ability to generate
and maintain particular formation shapes. It is also important
that a multi-robot system can evaluate and select appropri-
ate alternative formations when an ideal formation cannot
be upheld, particularly in dynamic real world scenarios. A
distributed formation selection mechanism that addresses these
issues by enabling groups of unmanned ground vehicles to
autonomously select, scale and morph formation shapes when
navigating through dynamic environments is presented in this
paper. Experiments on non-holonomic ground moving robots
demonstrate the suitability of the proposed technology.

I. INTRODUCTION

The research community has recently shown a growing
interest in multi-robot systems (MRS) due to their high-
impact application areas, including disaster management,
environmental monitoring, exploration and surveying. The
advancement of this technology has created a demand for dis-
tributed mechanisms that can monitor and regulate formation
configurations, as the success of groups often depends on the
ability to preserve appropriate geometric structures [1]. As
a result, formation control mechanisms that enable MRS to
generate and preserve formations have been widely studied
[2], [3], [4], [5], [6]. However their ability to select, scale and
morph formations autonomously in dynamic environments
has received much less attention. It is therefore important
to address this issue as most real world situations require
continuous adaptation to unpredictable environments, and
because it is desirable to minimize the load on human
operators in MRS contexts [7].

Some efforts in addressing this problem have therefore
been made. Relevant works include the: i) graph theory based
techniques presented in [8], [9], which offer a theoretical
framework for how formations can be scaled up and down, ii)
method described in [10] which enable swarms of simulated
robots to identify appropriate formation scales on the basis
of the number of robots in the system, and iii) research
presented in [11] that demonstrates how groups of non-
holonomic ground moving robots can scale and morph for-
mations autonomously. A drawback with the work presented
in [8], [9], [10] is that only varying formation sizes are
considered. This is not ideal as teams of robots are sometimes
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required to alter their formation shapes to accomplish a task
(e.g. if the robots have formed a broad formation and must
navigate through a narrow opening). The main drawback
with the work presented in [11] is that the authors did not
demonstrate that their robots can select alternative formation
scales and shapes in a distributed manner.

Researchers have also sought inspiration from biological
morphogenesis in their efforts to address the above prob-
lem. In [12] the authors present a morphogenesis inspired
neighborhood adaption mechanism that enables groups of e-
puck robots to distribute across a pre-defined target pattern
according to the number of robots in the system. However,
they do not scale the actual pattern up or down when the
number of robots do not fit the original pattern. This makes it
difficult to maintain appropriate formations when the number
of robots changes dramatically. The problem of selecting
appropriate formation shapes is furthermore not addressed.
In [13] a morphogenesis inspired adaptive pattern formation
mechanism for e-pucks is presented. A drawback with this
technique is that the generated formations are based purely
on circular patterns. This is a problem as different tasks often
require radically different target patterns. A more flexible
technique that can respond effectively to a broad range of
different scenarios is therefore required.

We address the above drawbacks by proposing a dis-
tributed technique that enable MRS to select, scale and
morph formation shapes when navigating through dynamic
environments. The proposed technology builds on the work
presented in [11] and is validated on real non-holonomic
ground moving robots.

The remaining parts of this paper are structured as follows;
Section 2 offers an overview of the system design, along
with detailed descriptions of the proposed formation control
mechanisms. Section 3 describes results from experiments
that have been designed to evaluate the proposed technology.
Finally, conclusions and suggestions for future research are
presented in Section 4.

II. AUTONOMOUS FORMATION SELECTION

In this research, we assume that the robots have been as-
signed from the outset an ideal formation for the task at hand
and a series of alternative formations with various scales.
Any two dimensional formation can be assigned to the robots
as long as the robots are connected. We also assume that the
robots are sometimes required to alter the ideal formation to
successfully navigate through dynamic environments without
experiencing collisions. Different formations have different
characteristics that make them ideal for particular tasks, for
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example, a maximum coverage formation covers an area with
the minimum number of robots, while a linear formation
makes it possible to move through narrow openings. The
ideal formation should therefore be selected according to the
task and hand. Additionally, the MRS should always seek to
preserve the ideal formation.

To achieve this aim, the proposed technique iterates
through a four stage process that involves: 1) sensing and pre-
processing, 2) local decision making, 3) distributed agree-
ment and 4) navigation. In Stage 1, each robot collects
information from its immediate surroundings by means of
an on-board distance measurement sensor, and prepares this
information for further processing. In Stage 2, the collected
data is fed into a decision tree that enables each robot to
identify a locally preferred formation. These locally preferred
formations are then shared with neighbouring robots so that
consensus can be reached on a group level in Stage 3. Each
robot calculates its desired position in the new formation
and navigates towards the target location in Stage 4, if a
formation change is required.

Fig. 1: System overview

An overview of the proposed technique is given in Fig. 1.
Detailed descriptions of Stages 1 through 3 are provided in
the following subsections. The reader is referred to [11] for
a detailed description of Stage 4.

A. Sensing and Pre-Processing

In Stage 1 distances to obstacles that appear within sensing
radius rs of robot R0 are collected by means of an on-
board distance measurement device with swipe angle Sangle.
If an obstacle is detected within this region, it is regarded as
blocking the path of R0, and further information about the
surrounding obstacles and robots is obtained.

To collect information about the surrounding obstacles and
robots, we first define the forward direction for R0 as the
y-axis of the robot’s orientation, and the x-axis as being
perpendicular to the forward direction, as illustrated in Fig.
2. With N obstacles and M robots within the sensing region
of R0 we also define relative angles θobs,i to the surrounding
obstacles, and θr,i to the surrounding robots. The Euclidean
distance dobs,i to each obstacle and dr,i to each surrounding
robot is then projected onto the x-axis of R0 according to

d′
obs,i = dobs,i sin(θobs,i) (1)

Fig. 2: Calculating the projected distance between the closest
obstacle and the closest robot

d′
r,i = dr,i sin(θr,i) (2)

to determine if there is sufficient empty space ahead of the
robot to allow R0 to move forward. We furthermore arrange
these projected distances with d′

obs,1 < d′
obs,2...d

′
obs, j < 0 ≤

d′
obs, j+1... < d′

obs,N and d′
r,1 < d′

r,2...d
′
r, j < 0 ≤ d′

r, j+1... < d′
r,M .

With d′
r,min being the x-coordinate of the robot who has

the shortest projected distance on the x-axis to robot R0 we
calculate d′

obs,min according to

d′
obs,min =







d′
obs, j+1 i f d′

r,min < 0
min(|d′

obs, j|, |d′
obs, j+1|) i f d′

r,min = 0
d′

obs, j i f d′
r,min > 0

(3)

B. Local Decision Making

Fig. 3: Overview of Local Decision Making Process

Stage 2 enables each robot to determine if a formation
change is required and to select its own locally selected
formation out of the collision-free formations. An overview
of the process is provided in Fig. 3.

At this stage, the first step is to examine the sensor data
from the last stage as indicated in Fig. 3, Step 1. If no
obstacle has been detected, the robot will prefer to maintain
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the ideal formation and no further processing is required.
In cases where one or more obstacles have been sensed,
a formation change may be required to avoid collisions.
Alternative formations will be evaluated according to the
following criteria:

1) The robot’s target destination should be reached without
collisions

2) The new formation should introduce the shortest pos-
sible travelling distance

3) Unnecessary transitions between alternative formations
should be avoided

Alternative formations that only differ from the ideal
formation in scale are given higher priority to be evaluated
in order to increase the likelihood of preserving the ideal
formation shape. Alternative formation are represented by
Fm,n. They are classified by the formation type, or intuitively,
the formation shape, m and its associated formation scale n.
Scaled versions of a formation type is achieved by changing
the inter-robot distance Dm,n. Alternative formations Fm,n

are evaluated in three steps as described in Fig. 3, the
intermediate output formations from the three steps are
represented by Fp, Fs and the final output of this stage, the
locally selected formation, is Fl f .

In Step 1, the parameter Wp is calculated for each robot
as described in

Wp =

{ |d′
obs,min|+ |d′

r,min| i f N 6= 0
rs + |d′

r,min| i f N = 0
(4)

This parameter measures the projected distance between
the closest obstacle and the closest robot to the forward direc-
tion vector. As indicated in Step 1, Wp is used to determine
if an alternative formation is collision-free, considering all
the surrounding obstacles and robots. The condition for an
alternative formation Fm,n to be selected in this step as one
of Fp is

Fm,n ∈ Fp, i f Dm,n ≤Wp − ts (5)

where
ts: Safety distance

Safety distance ts represents the space to be left between
the robots and obstacles and is introduced to ensure that the
locally selected formation satisfies Criterion 1.

Step 2 checks if all the formations in Fp require a change
in shape. If no alternative formations which require only
a change in scale from the ideal formation can be formed
without collisions, a change in formation type is required.
In this case, the neighbouring robots change their relative
positions, therefore they should not be used as references for
the clear path width. Hence the parameter Ws is calculated
as in

Ws = d′
obs, j+1 −d′

obs, j (6)

Ws measures the projected distances between the two
obstacles that are closest to the forward direction vector, as
indicated in Fig. 4.

Fig. 4: Calculating the projected distance between the closest
obstacles

Then in Step 3, another group of collision free formations
Fs is selected from

Fm,n ∈ Fs, i f Dm,n ≤Ws − ts (7)

In Step 3, alternative formations are evaluated. If a change
in formation type is required, formations in Fp are evaluated,
if no change in formation type is required, formations in Fs

are evaluated. In order to satisfy Criterion 2 and Criterion 3,
Fs or Fp are evaluated according to

Ei =Ciei (8)

where
Ei : Formation error score
Ci : Formation state factor
ei : Euclidean distance between current and target

positions

The formation with the smallest Ei value is selected by the
robot to be the locally selected formation Fl f . Formation state
factor Ci is introduced to avoid unnecessary transitions, as
empirical results show that robots have a tendency to select
the more compact formations when only ei is taken into
account, even if a more compact formation is required, which
in turn results in an unstable and highly fluctuant system. The
value for Ci is chosen such that Ei for the more compact
formations is amplified, and they are less likely to be chosen
as Fl f . Also, the value of Ci for the ideal formation should
be lower than that of the alternative formations in order to
amplify its chance of selection.

C. Distributed Agreement

Once individual robots have identified locally selected
formations, the group as a whole must reach a collective
agreement on which formation to select. At this stage, Fl f

is assigned to the robot as its initial formation state. Given
the notation ξi[k] for formation states of robot i during
the collective stage, ξi[0] = Fl f . It is proven in [18] that
distributed linear iterations offer fast convergence. Consensus
is achieved by means of the weighted consensus mechanism
in (9).
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ξi[k+1] =Wiiξi[k]+ ∑
j∈M

Wi jξ j[k], j = 1, ...Mi (9)

with

Wi j =
s jk j

k1 + k2 + ...+ kMi

(10)

s j = s0
V0

Vj
(11)

where
k : number of iterations
ξi[k] : current formation state of robot i
ξi[k+1] : next formation state of robot i
Wi j : weight on ξi at robot i
Mi : number of robots within robot i’s communication

radius
s0 : step constant
s j : step time of robot j
Vj : relative robot speed of closest obstacle to robot j
V0 : standard robot speed
k j : obstacle weight robot j introduced to its surrounding

robots

The mechanism is designed such that the closer a robot
is to obstacles, the higher its weight will become in the
consensus process. Having a weight that is associated with
the distance to obstacles exerts a bias on the robots that have
more precise information about the surrounding obstacles.
The robot that is closest to obstacles is also assumed to have
the highest chance of crashing unless the formation is altered
and the needs of this robot must therefore be attended to first.

Consensus is reached locally when the state differences
of a robot i and its neighbours are smaller than a threshold
Ts. Increasing this threshold will reduce the time it takes
to reach consensus. However, if the threshold is too large,
the discrepancy in the states will increase. It is therefore
important to select a threshold that balances speed and
accuracy. We have determined empirically that the state
difference threshold should be less than 10% of the minimum
state separation. This recommended threshold is used in
Section 3.

Parameter s j is the time interval between two consensus
processes, which increases when the speed of robots is
reduced with respect to obstacles, and it is therefore less
urgent to change formations. Standard relative speed V0 is
determined according to the recommended speed of specific
robots. The benefit of decreasing s j is that consensus can be
calculated at a slower pace to reduce energy consumption. It
should be noted that there are lower and upper bounds for s j.
The value should always be larger than the communication
round-trip delay to avoid using outdated data. The upper
bound can be found empirically by identifying the time
that enables the robots to reach consensus when the relative
speeds of the robots are close to zero. This upper bound
can be further increased if energy preservation is a major

(a) Maximum Coverage

(b) Dual Line (c) Line

Fig. 5: Alternative formation types

concern, however a higher risk of colliding with obstacles
necessitates lower upper bounds. The k j parameter is used
to calculate weight Wi j and accounts for the distance be-
tween obstacles and the robots. This parameter is calculated
according to

k j = exp(

rs

dmin
−1

τ
) (12)

where
dmin : distance to closest obstacle, and 0 < dmin < rs

τ : time constant

III. EXPERIMENT DESIGN AND RESULTS

In this section, we validate the proposed formation se-
lection mechanism by means of two experiments: one tests
the convergence speed of the proposed consensus algorithm
as the relative speed to obstacles increase, while the other
evaluates the spatial adaptability to varying path widths.
Each experiment was carried out 5 times and the mean of
the results were calculated and presented in graphs of this
section.

According to [14], [15], [16], several patterns can be
used as maximum coverage formations. The optimal pattern
depends on the communication and sensing ranges of the
robots. Considering the constraints given by our technology
and the connectivity requirements in this research, a trian-
gular pattern was selected. The alternative formations used
in our experiments are shown in Fig. 5. Different types of
arrows between nodes represent different constraint types and
each node represent one robot. Correspondingly, Tables II,
III and IV display the distance and angle constraints used in
each formation. These constraints have been adopted from
[6].

In the experiments, two continuous rows of virtual ob-
stacles are driven towards the MRS in order to simulate
a narrow tunnel that the robots have to pass through. The
formation states held by the robots at every time step are
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TABLE I: Parameters for Implementation Specific Variables

Parameters Value
Sangle 180◦

ts 436 mm
V0 61.2 mm/s
Ts 0.1
s0 1
rs 570 mm
τ 0.4

TABLE II: Constraints for Maximum Coverage Formation

Types Distance 1 Angle 1 Distance 2 Angle 2
1 rs 30◦ rs 90◦

2 rs −30◦ − −
3 rs −30◦ rs −90◦

4 rs 30◦ rs −30◦

recorded throughout this process. Fig. 6 shows a scenario in
which the MRS selected a Dual Line Formation to allow the
robots to pass through the tunnel as the Maximum Coverage
Formation, which is used as the ideal formation in our experi-
ments, cannot fit through the narrow path. Since no formation
selection algorithms that include obstacle avoidance have
been proposed in existing literature, a comparison with other
algorithms was not possible.

The MRS consists of five non-holonomic ground moving
“eBug” robots [17], while an overhead camera connected to
a computer acts as a pseudo-GPS which is used to emulate
laser range finders with a 360◦ field of view. The computer
also generates and moves the virtual obstacles that form the
narrow corridor, while ZigBee networks enable the robots
to communicate with the computer and neighbouring robots.
Implementation specific parameters used by the formation
selection algorithm are listed in Table I.

A. Robustness to Increasing Formation Speed

This experiment evaluated the algorithm’s ability to con-
verge to a formation while the relative speed of the robots,
with respect to surrounding obstacles, was increased. The

Fig. 6: The path ahead narrows, requiring a change from
Maximum Coverage Formation. The MRS determines it is
wide enough to accommodate Dual Line Formation, which
reduces the total travelling distance comparing to Line For-
mation.

TABLE III: Constraints for Dual Line Formation

Types Distance 1 Angle 1 Distance 2 Angle 2

1
rs√

2
0◦ rs 45◦

2
rs√

2
0◦

rs√
2

−90◦

3
rs√

2
0◦ − −

TABLE IV: Constraints for Line Formation

Types Distance 1 Angle 1 Distance 2 Angle 2

1
rs√

2
0◦ − −

collision free path formed by the approaching obstacles was
783.5 mm wide. Starting from a relative speed of 22.8 mm/s,
samples were taken in increments of 11.4 mm/s ending at 228
mm/s. The results from the experiment are plotted in Fig. 7.

The bottom solid line represents the time taken from when
the obstacles are spotted to when the group agrees on a
formation, while the dashed line represents the time taken
before the robots have moved to their target position in the
new formation. One can observe that the algorithm enables
the robots to successfully converge to alternative formations,
and thereby avoid obstacles, until the break point at 228.0
mm/s. The relative speed at the breakpoint equals 1.86 times
the maximum speed of the robots.

B. Robustness to Narrow Paths

In this experiment, the stability over various path widths
was tested. The separation that allows the formation to pass
through the obstacle course was gradually reduced from
661.2 mm to 233.7 mm, plus a safety distance of 436 mm.
Fig. 8 shows the average time taken to reach all intermediate
formation types before the final formation was reached.

Fig. 7: Time vs. relative speed
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Fig. 8: Time vs. path width

One can observe that the MRS selects its formation
according to the path width. The algorithm abandons the
maximum coverage formation when the path width is nar-
rower than 400 mm and thus enables the robots to pass
through the obstacle course without experiencing collisions.
The line formation is only formed when the path width
is 233.7 mm, which demonstrates that the MRS will not
converge to a more compact state than is necessary, in order
to conserve energy. It should also be noted that the dual line
formation is not formed when the path is wider than 547
mm, which justifies the use of formation state factor Ci.

IV. CONCLUSIONS

A distributed formation selection algorithm that enables
non-holonomic ground moving robots to autonomously se-
lect and generate formations was presented in this paper.
Experiments conducted on the proposed technology demon-
strate that the algorithm enables the robots to navigate
through environments with dynamic obstacles without ex-
periencing collisions when the relative speed of the robots
with respect to the obstacles is increased to 1.86 times the
maximum speed of the robots. The experiments furthermore
reveal that the formation selection mechanism is capable
of selecting formations without introducing excessive travel
distances. Future research can seek modifications in the
consensus process to decrease the inaccuracy created by
sensor noise in order to increase the system robustness.
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