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Abstract— We present a computationally efficient RGB-D
based pose estimation solution for less computationally re-
sourced MAVs, which are ideally suited as members in a swarm.
Our approach applies the sufficient statistics derived for a
least-squares problem to our problem context. RANSAC-based
outlier detection in aligning corresponding feature points is
a time consuming operation in visual pose estimation. The
additive nature of the used sufficient statistics significantly
reduces the computation time of the RANSAC procedure since
the pose estimation in each test loop can be computed by
reusing previously computed sufficient statistics. This eliminates
the need for recomputing estimates from scratch each time. A
simpler hypotheses testing method gave similar performance
in terms of speed but less accurate than our proposed method.
We further increase the efficiency by reducing the problem size
to four dimensions using attitude data from an Attitude and
Heading Reference System (AHRS). Using a real-world dataset,
we show that our algorithm saves up to 94% of computation
time for the RANSAC-based procedure in pose estimation while
improving the accuracy.

I. INTRODUCTION

Autonomous swarms of Micro Aerial Vehicles (MAVs)
have numerous indoor applications such as surveillance,
monitoring, collapsed building exploration and aiding in
disaster relief operations. In order to support robustness and
graceful degradation of performance in the case of individual
failure, a swarm robotic system comprises of individuals that
are less capable and dispensable. Thus in a swarm of MAVs,
individuals are very limited in resources compared to a single
specialised MAV with many sensors and high computational
resources.

Achieving autonomy of an MAV begins with estimating its
position and orientation in the environment, known as pose
estimation. The computational speed of pose estimation is
more crucial in aerial robots than in ground robots since
the performance in pose estimation is directly linked to the
stability of a vehicle. It is obvious that the problem becomes
much more challenging in limited resourced MAVs because
of their low processing power and memory.
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Various exteroceptive sensors such as laser range finders
[1]–[3], monocular cameras [4], [5] and stereo cameras
[6], [7] have been used effectively for indoor navigation in
MAVs. But in recent years, RGB-D visual pose estimation
methods have become popular among the MAV research
community for indoor applications [8]–[11]. The main reason
behind this trend is that RGB-D cameras are independent
modules providing rich 3D information about its environment
[12], which eliminates the need for any further processing to
calculate depth information, such as triangulation in stereo
cameras. In addition, their small size, light weight and
economical price make them ideal for use in low-cost MAVs.

Some of the first works that used RGB-D cameras for real-
time robot control did not completely rely on the RGB-D
information for computing full pose estimates. For example,
RGB-D information was used for estimating and controlling
the flying height of an MAV [8] and for indoor exploration
where pose estimation was done using a laser range finder
[13]. Huang et al. [9] was the earliest notable case of using
an RGB-D camera for onboard visual odometry. The more
recent works [10], [11] achieved fully onboard localisation
and mapping using RGB-D camera. However, all the afore-
mentioned visual odometry methods [9]–[11] used single
board computers that are relatively high in processing power
and cost.

A recent comparison study [14] provided a detailed anal-
ysis and experimental comparison of several state-of-the-
art real-time odometry estimation methods that use RGB-
D cameras, focusing on algorithms suitable for limited-
resourced MAVs. They categorised the existing visual odom-
etry methods into three groups according to sensor data types
as (1) image-based, (2) depth-based and (3) both image- and
depth-based. Imaged-based methods are further subdivided
as (a) sparse visual feature based methods, (b) sparse vi-
sual feature based methods combining depth data, and (c)
dense feature based methods. For experimental comparison
they used several existing real-time RGB-D visual odometry
methods that fall into different categories mentioned above.
The methods included, among others, Libviso2 [15], Fovis
[9], DVO [16] and FastICP [17]. It should be noted that
among the algorithms considered, only Fovis [9], which is
a sparse visual feature based method combining depth data,
was originally implemented on an MAV. The results from
the experiments using the RGB-D dataset [18] as well as
self-recorded datasets on a laptop computer show that Fovis
[9] is the fastest (least CPU-intensive) method.

However, in our preliminary experiments we discovered
that even a sparse visual feature based method which is very
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similar to Fovis [9] produces pose estimation at a rate less
than 1Hz on our system. This is not fast enough for real-time
navigation of our MAV swarm.

We propose an efficient pose estimation method using
RGB-D and AHRS (Attitude and Heading Reference Sys-
tem) which enables autonomous flight of a limited-resourced
MAV by achieving adequately fast estimates for real-time
navigation while not compromising the accuracy. We realise
this by using the sufficient statistics of least-squares minimi-
sation to speed up the outlier detection step of the pose esti-
mation process. These sufficient statistics has been proposed
in a previous work in bio-informatics [19] for efficiently
aligning protein structures. Even though pose estimation
also involves a similar alignment process for computing the
transformation between camera poses, the 3D feature point
sets contain noisy data which are normally pruned out inside
the RAndom SAmple Consensus (RANSAC) procedure. We
make use of the additive nature of these sufficient statistics
[19] to improve the speed of the RANSAC process by reusing
previously computed transformations. To the best of our
knowledge, existing works have not explored the use of
sufficient statistics for pose estimation and we are the first to
adopt this approach. We further improve the estimation speed
by reducing the degrees of freedom (DOF) of the problem
from 6 to 4 using attitude information from an AHRS.

The rest of this paper is organised as follows: Section II
gives a detailed description of the proposed method. In this
section we explain our motivation behind our choice to speed
up the outlier detection step (II-A), how we use sufficient
statistics in the RANSAC-based outlier detection (II-B) and
how we incorporate AHRS information to further improve
the speed of pose estimation (II-C). Experimental results are
presented in Section III, which includes the system overview
(III-A). Finally, concluding remarks and future work are
mentioned in Section IV.

II. POSE ESTIMATION

A. Motivation

We initially re-implemented a visual pose estimation
method available in Mobile Robot Programming Toolkit1

(MRPT) and tested it on our system (detailed in Sec-
tion III-A) to investigate the pose estimation speed and
time taken by each step involved. We chose to implement
a visual (2D) feature based method which combines depth
and visual information, since this category of methods has
been identified as the fastest in [14]. A simple block diagram
of this method is shown in Fig. 1.

The pose estimation process starts by prepossessing and
extracting features from an RGB image using the Good
Features To Track [20] method. Detected features are then
tracked across successive RGB image frames using the pyra-
midal implementation of the Lucas-Kanade feature tracker
[21]. We adopt a keyframe technique for reducing short-
scale drift, where features are only detected for keyframes
and then tracked across several successive frames until a new

1http://www.mrpt.org/list-of-mrpt-apps/application-kinect-3d-slam/

keyframe is assigned. The optical flow step yields two sets of
feature points which are then projected onto 3D coordinates
by using their 2D feature positions and the corresponding
depth data. The transformation which projects these two sets
of 3D points onto one other is related to the relative motion
of the camera. However, since the two 3D point sets are
most likely to contain outliers due to noise, these outliers
are first removed using a RANSAC procedure. Then the
transformation between these two sets of filtered 3D points
is calculated and in turn used to calculate the relative pose
of the camera between those frames.
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Fig. 1. Information Flow in Pose Estimation: for feature detection
and optical flow commonly used OpenCV C++ implementations goodFea-
turesToTrack and calcOpticalFlowPyrLK are used, respectively

TABLE I

PROCESS EXECUTION TIME OF A SINGLE POSE ESTIMATION

Process Feature Extraction OpticalFlow RANSAC+Alignment

Time 0.48s 0.06s 1.48s

Table I shows the average process execution time over 5
experimental runs conducted on our system. It is evident that
the RANSAC-based outlier removal step requires the highest
CPU time of all the steps, followed by the feature extraction
step. The RANSAC process for which the execution time
is shown in the table is explained in the following Section
II-B as RANSAC-HT2. A single pose estimation cycle takes
more than a second and this pose estimation rate of less
than 1Hz is not fast enough for an autonomous robot. Thus
we aim to increase the estimation speed by first targeting to
improve on the outlier removal step which is the slowest. It
should be noted that even though FAST features [22] used in
Fovis [9] is faster at extracting features, a larger number of
features need to be extracted to ensure that enough features
are matched across frames. This in turn increases the time
taken for outlier detection by a larger margin than the time
saved in feature detection.

B. Applying sufficient statistics to pose estimation

RANSAC [23] is a non-deterministic algorithm for fit-
ting a model to a dataset contaminated with outliers. It
is composed of the two steps, hypothesise and test that
are repeated in an iterative manner. This process includes
generating several hypotheses (model parameters) using ran-
domly selected minimal sample sets and then testing each
of these hypotheses on the entire input dataset to build up
consensus sets of ‘inliers’. The hypothesis with the highest
score (e.g. most number of inliers) is identified as the
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best. Favourable properties of RANSAC include robustness,
generality and simplicity. It is a widely used method for
estimating geometric transformations in computer vision,
and consequently used in visual odometry algorithms for
approximating the transformation between feature points
tracked across different image frames.

When using RANSAC for relative pose estimation with
RGB-D data, minimal sample sets are randomly selected
from the entire tracked 3D points, and they are used to
calculate corresponding transformations (hypotheses). These
transformations then need to be tested against the remaining
set of tracked 3D points. One possible way to do this involves
using the calculated transformation to project remaining
points and computing error between corresponding point
pairs [24]. Another way would be to calculate a new trans-
formation by adding each remaining point pair to the sample
set and taking the difference from the initial transformation
[25]. These two methods will be hereafter referred to as HT1
and HT2, respectively. Even though this re-computation of
transformations is computationally costly, our experiments
showed that using HT2 for hypotheses testing has better
accuracy. This motivated us to speed up RANSAC process
which uses HT2 (RANSAC-HT2).

Sufficient statistics [26] are essentially a set of statistics
that summarise all of the information in a sample about a
certain parameter. A set of sufficient statistics with respect
to the least squares alignmen was derived in [19], and
furthermore, these statistics are demonstrated to be additive.
Therefore, by using these statistics in the RANSAC process,
computing transformations of the sample set plus each addi-
tional point pair can be performed in constant time by reusing
the previous solutions of the sample set. This process is much
faster than recomputing transformations from scratch. Now
let us re-derive the set of sufficient statistics of [19] with
respect to our problem for completeness.

Let us denote the two 3D feature sets obtained from
successive RGB-D camera frames as U = {u1,u2 . . .un} and
V = {v1,v2 . . .vn}, where n is the number of features in each
set and ui corresponds to vi, i = 1, . . . ,n. The objective is to
find the rotation R and translation t that aligns the point sets
U and V while minimising the alignment error defined as

min
R,t

n

∑
i=1

‖Rvi + t −ui‖
2. (1)

Since R is independent of t at the optimum, translating U and
V such that their geometric centres are at the origin yields
an objective function that is independent of t

min
R

n

∑
i=1

‖Rv′i −u′i‖
2, (2)

where u′i = ui−c(U) and v′i = vi−c(V ) are the corresponding
translated features results in the modified feature sets U ′

and V ′. Note that c(U) , ∑ui/|U |, where |U | denotes the
cardinality of the set U .

Rigid-body alignment is a general regression problem and
we assume that it produces error terms, εi = Rv′i − u′i that
are normally distributed as N (0,σ) , which is minimised

by the solution of (2). Thus, the likelihood of the normally
distributed error terms after alignment is given as

f (ε1, . . . ,εn|σ) = (2πσ2)
−

n
2 exp

(

−
1

2σ2

n

∑
i=1

‖εi‖
2

)

. (3)

By examining the decomposition of ‖Rv′i − u′i‖
2, the sum-

mation term in (3) can be deduced to a form containing a
set of statistics which does not take into account its data
explicitly. As these statistics are also sufficient to estimate
σ , they form a set of sufficient statistics for the least-
squares minimisation problem. This set consists of 24 distinct
statistics as described below. First, let us define

si j
m , u′i j − v′i j, si j

p = u′i j + v′i j, i = 1, . . . ,n, j = x,y,z,

where u′ix indicates the x component of vector u′i and so on.
From these, we can define the set of sufficient statistics as

Ω =

{

for j,k ∈ {x,y,z},
n

∑
i=1

si j
m,

n

∑
i=1

si j
p ,

n

∑
i=1

si j
msik

m,

n

∑
i=1, j 6=k

si j
msik

p ,
n

∑
i=1

si j
p sik

p

}

. (4)

Let us consider two pairs of corresponding feature sets,
(U ′

s ,V
′
s ) and (U ′

t ,V
′

t ). Let Ω1 and Ω2 be the sufficient statistics
of the alignment of the first and the second pair respectively.
As shown through lemmas 1-3 and corollaries 1-4 in [19],
sufficient statistics of least-squares minimisation are additive.
Therefore, we can use Ω1 and Ω2 to derive set of sufficient
statistics Ω′ of the alignment of U ′ with V ′, where U ′ =
U ′

s ∪U ′
t and V ′ =V ′

s ∪V ′
t .

The updated sufficient statistics Ω′ is now used with a
method proposed in [27] to recompute rotation R. This
method transforms the least-squares minimisation problem
to an eigenvalue problem of the form Q(Ω)q = λq. Q(Ω)
is a 4 × 4 symmetric matrix that is a function of Ω, q
is the rotation R in quaternion form and λ is eigenvalue
corresponding to q. The eigenvector of the minimum eigen-
value gives the optimal rotation which minimises (2). Each
element of matrix Q(Ω) can be computed by combining a
subset of the sufficient statistics Ω given in (4). Since these
statistics are additive, matrix Q of the sample set with an
additional pair of points can be constructed by finding the
elements of Q for the additional pair and adding it to the
previously computed Q of the sample set. This eliminates
the need of recomputing the Q from entire set. Once Q is
updated using sufficient statistics, it is diagonalised to find
the corresponding rotation.

Thus, by adopting sufficient statistics in RANSAC-based
pose estimation, the process speed can be drastically in-
creased by performing least-square minimisation using the
previous partial solutions. A single iteration of the RANSAC
procedure of our proposed fast pose estimation algorithm is
shown in Algorithm 1. It begins by randomly selecting a pair
of sample sets (Us,Vs) from (U,V ), in which each element
in Us has a corresponding element in Vs. The remaining
element pairs then constitute the test pair of sets (Ut ,Vt)
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where Ut = U \Us and Vt = V \Vs. The sufficient statistics
in (4) are computed for the sample set. These statistics are
denoted by Ωs. Then Ωs is used to compute the relative
pose estimation ps for the sample set by constructing the
corresponding Q matrix. Next, a point pair (ui,vi) is picked
and the sufficient statistics of that pair (Ωi) is computed. We
then compute the relative pose corresponding to the sample
set with the additional point pair (pi) from its sufficient
statistics (Ω′) which is computed using Ωs and Ωi. If the
deviation of pi from ps is within an acceptable bound, the
additional point pair is considered as an inlier and added to
the consensus set (Uc,Vc). Sufficient statistics for the pair
(Ωi) is added to the sufficient statistics of the consensus set
(Ωc). At the end the iteration, precomputed values ps, Ωs and
Ωc are used to compute the corresponding pose estimation
(ps+c) for (Us,Vs)∪ (Uc,Vc).

Let us assume that we have a sample set and a test set Us

and Ut . A single iteration of RANSAC in this case consists
of computing transformations for sample set plus every point
pair in test set. Otherwise these transformations would have
to be calculated from scratch requiring O(|Us||Ut |), whereas
our method only requires O(|Ut |).

Algorithm 1 Fast pose estimation with sufficient statistics
Input: Two sets of corresponding 3D points U = {ui} ,V = {vi}, i= 1,2 . . .n
Output: Rotation R and translation T .
Begin:

1. Randomly select minimal sample set Us ⊂U , Vs ⊂V
2. Compute sufficient statistics Ωs of sample set Us, Vs
3. Compute relative pose ps from Us and Vs
4. for for each ui ∈Ut =U \Us and vi ∈Vt =V \Vs do
5. Compute sufficient statistics Ωi of ui,vi
6. Compute sufficient statistics Ω′ of (Us,Vs)∪ (ui,vi) using Ωs,Ωi
7. Compute relative pose pi using Ω′ and ps
8. if ||ps − pi||< threshold then
9. add ui, vi to consensus set Uc, Vc

10. Update sufficient statistics Ωc of Uc, Vc using Ωc,Ωi
11. end if
12. end for
13. Compute sufficient statistics Ωsc of (Us,Vs)∪ (Uc,Vc) using Ωs,Ωc
14. Compute relative pose ps+c using Ωsc and ps

C. Further speedup of pose estimation using AHRS data

Inertial sensors are essential for MAVs and the attitude
estimates from their data are accurate enough for low-level
stabilisation of the vehicle. Therefore we propose the use of
attitude information from an AHRS to reduce the compu-
tational load involved in pose estimation further. However,
we disregard the heading information due to the presence of
large errors. This is because of magnetic distortion arising
from MAVs propellers and the nature of modern indoor
environments [28]. By applying the attitude information from
the AHRS to the alignment of 3D feature points extracted
from RGB-D data, the pose estimation can be reduced to a
problem with 4-DOF consisting of translation and heading.
It should be noted that even though AHRS readings can be
inaccurate under large angular accelerations, we assume slow
and smooth motions of MAVs in this paper.

Now we describe the problem reduction steps in detail.
The translated features v′i ∈V ′ are rotated along the attitude

axes (in reverse sequence: roll, pitch) by the corresponding
angles provided by AHRS to get V ′′ = v′′1 ,v

′′
2 . . .v

′′
n . Now the

alignment of the two point sets U ′ and V ′′ is essentially a
least-square problem along the heading axis. To solve this in
an efficient way, we use a constrained least-squares minimi-
sation method described in [29], which we now outline.

Let q ≡ (q1,q2,q3,q4) ≡ (q1, q̄) be a unit quaternion that
contains scalar q1 and vector q̄ ∈ R

3. If q is a rotation
quaternion that represents a rotation along the unit vector m
by an angle ψ , q can be represented in the following manner.
q = (cos ψ

2 ,msin ψ
2 ) ≡ (cos ψ

2 ,mx sin ψ
2 ,my sin ψ

2 ,mz sin ψ
2 ) ≡

(q1,mxq0,myq0,mzq0), where m = mxi+myj+mzk and m2
x +

m2
y +m2

z = 1. Then, rotating a vector v′ about the rotation
axis m by angle ψ is given by v′′ = q−1v′q. Thus, the sum
of squares of the error ξ between rotated feature points in
set V ′′ and feature points in U ′ can be expressed as

ξ =
n

∑
i=1

‖u′i −q−1v′iq‖
2. (5)

Our objective here is to calculate rotation q∗ that minimises
the least-square error. After a series of mathematical oper-
ations, the minimisation problem can be deduced to linear
equations in quaternion variables q1 and q0, which then can
be organised into an eigenvalue problem of the form

(

A B
B C

)(

q1

q0

)

= λ
(

q1

q0

)

, (6)

where A = ∑n
i=n(M

2
ix + M2

iy + M2
iz), B = ∑n

i=n(mx(PiyMiz −
MiyPiz) − my(PixMix − MixPiz) + mz(PixMiy − MixPiy)), C =

∑n
i=n(mx(PiyMiz−MiyPiz)−my(PixMix−MixPiz)+mz(PixMiy−

MixPiy)), Mix = u′ix − v′′ix, Miy = u′iy − v′′iy, Miz = u′iz − v′′iz,
Pix = u′ix+v′′ix, Piy = u′iy+v′′iy, Piz = u′iz+v′′iz. Here, u′ix, u′iy, u′iz
are the x, y and z components of u′i respectively. Solving the
characteristic polynomial (quadratic function) of Equation 6
yields two eigenvalues and the smallest of it corresponds to
q∗ which minimises ξ . In our problem context, m is the
unit vector along the heading axis, which is known. Thus,
calculation of the heading ψ is trivial (2cos−1 q1).

III. EXPERIMENT DESIGN AND RESULTS

We implemented our pose estimation method in C++ using
OpenCV2 for feature detection (goodFeaturesToTrack) and
optical flow (calcOpticalFlowPyrLK) as well as the open-
source implementation3 of [19] for alignment of 3D points
and computing sufficient statistics. We evaluated the perfor-
mance of the proposed method using several data sets. First,
we applied our algorithm to a benchmark RGB-D data set in
order to verify accuracy and computational performance on
our hardware. Finally, we used our proposed method on a
data set acquired through an experiment with AHRS running
in real-time on our hardware. The ground truth was measured
using an OptiTrack motion capture system with eight Flex 13
motion capture cameras4 installed in an indoor environment
with much texture and structure.

2http://opencv.org/
3http://www.csse.monash.edu.au/∼karun/superpose3D/
4http://www.optitrack.com/products/flex-13/
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A. System Overview

The system used in this work includes a Beaglebone
Black (BBB) running Ubuntu 12.04 LTS and containing
a 1GHz Sitara Cortex A8 ARM processor plus 512MB
DDR3L 800MHz RAM. The RGB-D camera used is
PrimeSenseTMCarmine 1.085, which can provide both color
and depth information with a 640x480 pixels resolution at
30 frames per second. The used AHRS VectorNavTMVN-100
Rugged6 is capable of producing attitude data at 400Hz.

B. Test with a benchmark dataset

We evaluated the accuracy of our method on the RGB-
D benchmark dataset [18], freiburg3 long office household.
According to the tool provided with the benchmark dataset,
the absolute position root-mean-square error (RMSE) of
the pose estimation with sufficient statistics was 0.514m.
However, as mentioned earlier, the pose estimation with
RANSAC-HT1 gave higher RMSE of 0.609m. To check the
accuracy of the 4-DOF pose estimation method, we assumed
ground truth attitude data of the benchmark dataset as the
attitude provided by the AHRS. In this case, an even better
pose estimation of RMSE 0.406m was achieved as expected.

C. Computational cost comparison

We measured the computational cost of 3D feature align-
ment step of the pose estimation routine. Table II shows the
computational cost of the alignment step for four different
pose estimation routines over five test runs. These are: 1)
RANSAC-HT1, 2) RANSAC-HT2, 3) RANSAC-HT2 and
sufficient statistics (SS), and 4) RANSAC-HT2, SS and
AHRS. It is evident that the use of sufficient statistics
decreases the time required for a single feature alignment
cycle, thereby decreasing overall time by 92%, leading to an
average pose estimation rate of 2.31Hz on BBB and showing
similar performance in terms of speed as pose estimation
with RANSAC-HT1. This is three times as fast as the pose
estimation without sufficient statistics (RANSAC-HT2). The
use of attitude data for pose estimation decreases the time
required for pose estimation further by approximately 5%.

TABLE II

EXECUTION TIME COMPARISON

Alignment
Execution Time (sec)

1 2 3 4 5

Standard+HT1 0.108±0.023 0.105±0.022 0.104±0.021 0.104±0.019 0.106±0.020

Standard+HT2 1.467±0.243 1.476±0.253 1.477±0.241 1.473±0.252 1.479±0.256

with SS 0.108±0.019 0.107±0.020 0.106±0.018 0.106±0.017 0.111±0.023

with SS + AHRS 0.088±0.019 0.087±0.020 0.086±0.017 0.086±0.016 0.091±0.021

D. Test with our own RGB-D and AHRS data

We conducted a series of data collection experiments
with our motion capture system in place to record the
ground truth. The main objective of these experiments is

5http://www.i3du.gr/pdf/primesense.pdf
6http://www.vectornav.com/products/vn100-rugged

to validate our method using actual data from the RGB-
D camera and the AHRS, since the benchmark data sets
do not contain attitude information from an inertial sensor.
Figure 2 shows the estimated and ground truth trajectories
from one of the experiments run. The tool provided with
the benchmark dataset is used to align the trajectories, upon
which RMSE values of 0.130m and 0.158m are reported for
the estimation with sufficient statistics and estimation using
HT1, respectively. By combining the AHRS attitude data
we get a better estimation with a lower RMSE of 0.095m.
A detailed comparison of position and angular estimations
against ground truth is given in Figure 3. For our method
to be considered valid, it needs to improve on computation
time while maintaining the same level of accuracy. Our
method in fact even improved on the accuracy in addition
to dramatically reducing computation cost.

z-axis

1.4

1.2

0.8

1

-1-0.5
x-axis
00.5

1

0

0.2

0.4

0.6

0.8
y
-a
x
is

Estimation with Sufficient Statistics (SS)

Estimation with SS + AHRS

Ground Truth

Standard+HT1

Fig. 2. Comparison of Estimated and Ground Truth Trajectories

0 200 400 600 800 1000 1200

X
(m

et
er
s)

-1

-0.5

0

0.5

1

0 200 400 600 800 1000 1200

Y
(m

et
er
s)

0.8

1

1.2

1.4

1.6

0 200 400 600 800 1000 1200

Z
(m

et
er
s)

-0.5

0

0.5

1

1.5

0 200 400 600 800 1000 1200

Y
aw

(d
eg
)

-10

-5

0

5

10

frame no.

0 200 400 600 800 1000 1200

P
it
ch

(d
eg
)

0

5

10

15

20

Estimation with SS Estimation with SS+AHRS Ground Truth Standard+HT1

frame no.

0 200 400 600 800 1000 1200

R
o
ll
(d
eg
)

-20

-10

0

10

20

Fig. 3. Comparison of Position and Angular Estimates

IV. CONCLUSION

In this paper we present an efficient pose estimation
method which is capable of producing estimates on a limited-
resourced platform at an adequate rate for real-time nav-
igation of a slowly moving MAV. This is achieved by
speeding up the RANSAC-based outlier detection process
by incorporating sufficient statistics to recompute pose esti-
mations reusing previously computed information. We used
two different hypotheses testing methods in the RANSAC
procedure explained as HT1 and HT2. Without the use of
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sufficient statistics, RANSAC-HT2 is slower, whereas the
faster RANSAC-HT1 is less accurate. Our proposed method
improved the speed of RANSAC-HT2 to a similar level as
RANSAC-HT1. Pose estimation effort is further reduced by
making use of attitude data from AHRS with RANSAC-
HT2, bringing down the problem to only a translation and
heading estimation. The accuracy of the proposed method is
evaluated on a public real-world benchmark dataset and its
performance has been validated by running the estimation
algorithm real-time on a limited-resourced platform. Using
our proposed pose estimation algorithm, we were able to
reduce the time taken for the outlier detection by 94%,
achieving a threefold increase in pose estimation speed
compared to RANSAC-HT2 without sufficient statistics. This
is even faster than RANSAC-HT1 and more accurate.

However, the absence of loop closure in the pose estima-
tion routine makes the estimation error to grow over time.
We intend to pursue implementing loop closure, integrating
control and path planning as our future work to enable indoor
autonomous flight with very limited resources.
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