FIT1029 Algorithmic problem solving - Semester 1, 2012

Algorithms are recipes for solving a problem. They are fundamental to computer science and software engineering. Algorithms are the formal foundation of computer programming but also exist independently of computers as systematic problem-solving procedures. This unit introduces algorithmics, the study of algorithms. It is not about programming and coding but rather about understanding and analysing algorithms and about algorithmic problem-solving, i.e. the design of systematic problem-solving procedures. The unit will not require any knowledge of a programming language and is very hands-on. Students will develop algorithms to solve a wide variety of different problems, working individually as well as together in groups and as a class.

Topics include: what is a computational problem and what is an algorithm; basic control structures; basic data structures; modular algorithm structure; recursion; problem-solving strategies for algorithm development; arguing correctness of an algorithm; arguing termination of an algorithm; understanding the efficiency of an algorithm; and limitations of algorithms.

Mode of Delivery

- Clayton (Day)
- Sunway (Day)

Contact Hours

2 hrs lectures/wk, 2 hrs tutorials/wk

Workload

Students will be expected to spend 12 hours per week on various activities including:

- two-hour lecture and
- two-hour tutorial (requiring advance preparation)
- a minimum of 2-3 hours of personal study per one hour of contact time in order to satisfy the reading and assignment expectations.
- You will need to allocate up to 2 hours per week in some weeks, for use of a computer, including time for newsgroups/discussion groups.

Chief Examiner

Dr David Albrecht

Campus Lecturer

Clayton

David Albrecht
Academic Overview

Outcomes

At the completion of this unit students will have -
A knowledge and understanding of:

- the difference between algorithms and processes;
- basic ways to structure algorithms: basic data structures (simple variables, collections structure, specifically vectors, lists, sets, and tables); basic control structures (sequence, choice, iteration);
- recursion;
- modular algorithm structures;
- the equivalence of recursion and iteration;
- problem solving strategies suitable for algorithm development including top-down design and bottom-up design;
- simple standard patterns for algorithms (eg traversal, search);
- what makes a good algorithm
- limitations of algorithms (high level).

Developed the skills to:

- develop simple iterative and recursive algorithms
- argue the correctness of simple algorithms
- judge the efficiency of simple algorithms, and

Developed attitudes that enable them to:

- value clear specification of problems;
- understand the relation between algorithms and programs;
- appreciate the value of designing abstract algorithms before starting to code a program;
- have confidence that they can develop algorithms to solve computational problems;
- appreciate that seemingly difficult problems can have very simple elegant algorithmic solutions (and vice versa);
- value correctness arguments for algorithms; and
- value the importance of simplicity and efficiency.

Demonstrated the communication skills necessary to:

- solve a problem by discussing possible approaches and solutions as a team; and
- clearly communicate (the specification of) a computational problem, its algorithmic solution and arguments for correctness and efficiency.

Graduate Attributes

Monash prepares its graduates to be:

1. responsible and effective global citizens who:

 a. engage in an internationalised world
 b. exhibit cross-cultural competence
 c. demonstrate ethical values
Academic Overview

critical and creative scholars who:

a. produce innovative solutions to problems
b. apply research skills to a range of challenges
c. communicate perceptively and effectively

Assessment Summary

Examination (3 hours): 60%; In-semester assessment: 40%

<table>
<thead>
<tr>
<th>Assessment Task</th>
<th>Value</th>
<th>Due Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assignment 1</td>
<td>10%</td>
<td>Monday 19 March 2012</td>
</tr>
<tr>
<td>Assignment 2</td>
<td>15%</td>
<td>Monday 7 May 2012</td>
</tr>
<tr>
<td>Mid semester test</td>
<td>15%</td>
<td>Week 6</td>
</tr>
<tr>
<td>Examination 1</td>
<td>60%</td>
<td>To be advised</td>
</tr>
</tbody>
</table>

Teaching Approach

Lecture and tutorials or problem classes

This teaching and learning approach provides facilitated learning, practical exploration and peer learning.

Feedback

Our feedback to You

Types of feedback you can expect to receive in this unit are:

- Informal feedback on progress in labs/tutes
- Graded assignments with comments
- Test results and feedback

Your feedback to Us

Monash is committed to excellence in education and regularly seeks feedback from students, employers and staff. One of the key formal ways students have to provide feedback is through SETU, Student Evaluation of Teacher and Unit. The University's student evaluation policy requires that every unit is evaluated each year. Students are strongly encouraged to complete the surveys. The feedback is anonymous and provides the Faculty with evidence of aspects that students are satisfied and areas for improvement.

For more information on Monash's educational strategy, and on student evaluations, see:
http://www.policy.monash.edu/policy-bank/academic/education/quality/student-evaluation-policy.html
Previous Student Evaluations of this unit

If you wish to view how previous students rated this unit, please go to https://emuapps.monash.edu.au/unitevaluations/index.jsp

Recommended Resources

Recommended Texts are:

Unit Schedule

<table>
<thead>
<tr>
<th>Week</th>
<th>Activities</th>
<th>Assessment</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>No formal assessment or activities are undertaken in week 0</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Introduction to the unit and the type of problems</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Understanding and modelling the problem</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Invariants in problems and data</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Decomposition of problems and applying Brute Force to solve problems</td>
<td>Assignment 1 due Monday 19 March 2012</td>
</tr>
<tr>
<td>5</td>
<td>Using abstraction, symmetry, heuristics and divide and conquer to simplify problems</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Recursion</td>
<td>Mid semester test</td>
</tr>
<tr>
<td>7</td>
<td>Backtracking</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Dynamic Programming</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Fundamentals</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Abstract Data Types and Correctness</td>
<td>Assignment 2 due Monday 7 May 2012</td>
</tr>
<tr>
<td>11</td>
<td>Complexity</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Limitations of algorithms</td>
<td></td>
</tr>
<tr>
<td>SWOT VAC</td>
<td>No formal assessment is undertaken SWOT VAC</td>
<td></td>
</tr>
</tbody>
</table>

Unit Schedule details will be maintained and communicated to you via your MUSO (Blackboard or Moodle) learning system.
Assessment Requirements

Assessment Policy

Faculty Policy - Unit Assessment Hurdles

Assessment Tasks

Participation

• Assessment task 1

 Title: Assignment 1
 Description: This assignment will aim to help you understand how to go about finding algorithms to solve problems.
 Weighting: 10%
 Criteria for assessment: Detailed assessment criteria will be issued along with the assignment.
 1. All assumptions should be stated.
 2. All algorithms must meet the problem specification.
 3. Students should be able to answer questions about their own work.
 Due date: Monday 19 March 2012

• Assessment task 2

 Title: Assignment 2
 Description: This assignment will help you understand different search techniques. It will also help you communicate and reason about algorithms.
 Weighting: 15%
 Criteria for assessment: Detailed assessment criteria will be issued along with the assignment.
 1. All assumptions should be stated.
 2. All algorithms must meet the problem specification.
 3. Students should be able to answer questions about their own work.
 Due date: Monday 7 May 2012
Assessment Requirements

• Assessment task 3

Title: Mid semester test
Description: This test will be based on the first 4 weeks of material.
Weighting: 15%
Criteria for assessment:
Due date: Week 6

Examinations

• Examination 1

Weighting: 60%
Length: 3 hours
Type (open/closed book): Closed book
Electronic devices allowed in the exam: None

Assignment submission

It is a University requirement (http://www.policy.monash.edu/policy-bank/academic/education/conduct/plagiarism-procedures.html) for students to submit an assignment coversheet for each assessment item. Faculty Assignment coversheets can be found at http://www.infotech.monash.edu.au/resources/student/forms/. Please check with your Lecturer on the submission method for your assignment coversheet (e.g. attach a file to the online assignment submission, hand-in a hard copy, or use an online quiz).

Online submission

If Electronic Submission has been approved for your unit, please submit your work via the VLE site for this unit, which you can access via links in the my.monash portal.

Extensions and penalties

Submission must be made by the due date otherwise penalties will be enforced.

Returning assignments

Students can expect assignments to be returned within two weeks of the submission date or after receipt, whichever is later.
Other Information

Policies

Monash has educational policies, procedures and guidelines, which are designed to ensure that staff and students are aware of the University’s academic standards, and to provide advice on how they might uphold them. You can find Monash's Education Policies at: http://policy.monash.edu.au/policy-bank/academic/education/index.html

Key educational policies include:

- Plagiarism (http://www.policy.monash.edu/policy-bank/academic/education/conduct/plagiarism-policy.html)
- Special Consideration (http://www.policy.monash.edu/policy-bank/academic/education/assessment/special-consideration-policy.html)
- Grading Scale (http://www.policy.monash.edu/policy-bank/academic/education/assessment/grading-scale-policy.html)
- Discipline: Student Policy (http://www.policy.monash.edu/policy-bank/academic/education/conduct/student-discipline-policy.html)
- Academic Calendar and Semesters (http://www.monash.edu.au/students/key-dates/)
- Orientation and Transition (http://www.infotech.monash.edu.au/resources/student/orientation/); and
- Codes of Practice for Teaching and Learning (http://www.policy.monash.edu/policy-bank/academic/education/conduct/suppdocs/code-of-practice-teaching-learning.html)

Student services

The University provides many different kinds of support services for you. Contact your tutor if you need advice and see the range of services available at www.monash.edu.au/students. For Sunway see http://www.monash.edu.my/Student-services, and for South Africa see http://www.monash.ac.za/current/

The Monash University Library provides a range of services and resources that enable you to save time and be more effective in your learning and research. Go to http://www.lib.monash.edu.au or the library tab in my.monash portal for more information. At Sunway, visit the Library and Learning Commons at http://www.lib.monash.edu.my/. At South Africa visit http://www.lib.monash.ac.za/

Academic support services may be available for students who have a disability or medical condition. Registration with the Disability Liaison Unit is required. Further information is available as follows:

- Website: http://monash.edu/equity-diversity/disability/index.html
- Email: dlu@monash.edu
- Drop In: Equity and Diversity Centre, Level 1 Gallery Building (Building 55), Monash University, Clayton Campus, or Student Community Services Department, Level 2, Building 2, Monash University, Sunway Campus
- Telephone: 03 9905 5704, or contact the Student Advisor, Student Community Services at 03 55146018 at Sunway
Reading list