FIT3142
Distributed computing

Unit Guide

Semester 2, 2012

The information contained in this unit guide is correct at time of publication. The University has the right to change any of the elements contained in this document at any time.

Last updated: 03 Jul 2012
Table of Contents

FIT3142 Distributed computing - Semester 2, 2012

- Mode of Delivery ... 1
- Contact Hours .. 1
- Workload .. 1
- Unit Relationships .. 1
 - Prohibitions .. 1
 - Prerequisites ... 1
- Chief Examiner ...
- Campus Lecturer ..
 - Clayton .. 2
- Tutors ...
 - Clayton ... 2

Academic Overview

- Outcomes .. 3
- Graduate Attributes .. 3
- Assessment Summary .. 3
- Teaching Approach ... 3
- Feedback .. 4
 - Our feedback to You .. 4
 - Your feedback to Us .. 4

Previous Student Evaluations of this unit

- .. 4

Unit Schedule

- .. 5

Assessment Requirements

- Assessment Policy ... 6
- Assessment Tasks ... 6
- Participation ... 6

Examinations

- Examination 1 ... 7

Assignment submission

- Online submission ... 8

Extensions and penalties

- Returning assignments ... 8

Resubmission of assignments

- Referencing requirements ... 8

Other Information

- Policies .. 9
- Student services .. 9
FIT3142 Distributed computing - Semester 2, 2012

Modern computer systems rely increasingly on distributed computing mechanisms, implemented often as clusters, web services, grids and clouds. Distributed computing systems can provide seamless (or web-like) access to a variety of networked resources, e.g. processing cores, large data stores and information repositories, expensive instruments, high-speed links, sensor networks, and multimedia services for a wide range of applications. This unit provides foundation knowledge and understanding of the basic mechanisms required to implement distributed computing systems, especially clouds, grids, web services and clusters. Topics covered include: Introduction to parallel and distributed computing mechanisms, concurrency and synchronisation, monitors, deadlocks, concurrent program analysis - Deadlock, Safety & Liveness properties, computational and service-oriented grids. LVS and Beowulf Clusters. Gridservices, Webservices, WSDL, HPC Portals, Home Grids, Clouds and Peer-to-Peer (P2P) networks. Distributed applications, and their performance and reliability in relation to processor and network performance constraints.

Mode of Delivery

Clayton (Day)

Contact Hours

2 hrs lectures/wk, 2 hr laboratory/wk, 1 hr tutorial/wk

Workload

Students will be expected to spend a total of 12 hours per week during semester on this unit as follows:

- Lectures: 2 hours
- Lab Sessions: 2 hours
- Tutorials: 1 hour (MURPA - Monash University Research Projects Abroad)
- and up to an additional 7 hours for completing lab and assignment work, private study and revision.

Unit Relationships

Prohibitions

FIT3010

Prerequisites

(FIT2069, FIT2070 and one of FIT3141 or ECE2041) or (FIT1005/FIT2008 and FIT2022)

Chief Examiner

Dr Carlo Kopp
Campus Lecturer

Clayton

Carlo Kopp, 63/210

Consultation hours: By appointment / email (part time staff)

Tutors

Clayton

TBD
Academic Overview

Outcomes

At the completion of this unit students will be able to:

• understand basic problems in distributed computing, especially in relation to concurrency, parallelism, synchronisation, deadlocks, safety and liveness properties;
• understand differences between various distributed computing models and widely used distributed computing schemes;
• understand basic functional and performance concepts in grids and clouds and identify frequent causes of performance problems in grid applications;
• understand basic software and hardware reliability concepts in grids and identify frequent causes of reliability problems in grid applications;
• discuss some of the enabling technologies e.g. high-speed links, emulators and storage area networks for building computer grids and clouds;
• explain the use of some of the cloud computing, grid computing and clustering middleware used to implement virtual super computers, including security mechanisms;
• explain programming toolkits such as Parallel Virtual Machine (PVM) for writing parallel computer applications;
• explain HPC Portals, peer-to-peer (P2P) networking and semantic grids;

elaborate some of the significant grid and cloud computing areas of application e.g. Bio-Technology, eHealth and eMedicine, Finance, and Computer Networks;

• install and configure a small computer grid using Globus toolkit middleware;
• gain basic familiarity with commonly used grid application tools and middleware interfaces;
• extend the grid and test these applications.

Graduate Attributes

Monash prepares its graduates to be:

1. responsible and effective global citizens who:
 a. engage in an internationalised world
 b. exhibit cross-cultural competence
 c. demonstrate ethical values

critical and creative scholars who:

 a. produce innovative solutions to problems
 b. apply research skills to a range of challenges
 c. communicate perceptively and effectively

Assessment Summary

Examination (3 hours): 60%; In-semester assessment: 40%

<table>
<thead>
<tr>
<th>Assessment Task</th>
<th>Value</th>
<th>Due Date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Teaching Approach

Lecture and tutorials or problem classes

This teaching and learning approach provides facilitated learning, practical exploration and peer learning.

Feedback

Our feedback to You

Types of feedback you can expect to receive in this unit are:

- Informal feedback on progress in labs/tutes
- Graded assignments with comments

Your feedback to Us

Monash is committed to excellence in education and regularly seeks feedback from students, employers and staff. One of the key formal ways students have to provide feedback is through SETU, Student Evaluation of Teacher and Unit. The University's student evaluation policy requires that every unit is evaluated each year. Students are strongly encouraged to complete the surveys. The feedback is anonymous and provides the Faculty with evidence of aspects that students are satisfied and areas for improvement.

For more information on Monash's educational strategy, and on student evaluations, see:
http://www.policy.monash.edu/policy-bank/academic/education/quality/student-evaluation-policy.html

Previous Student Evaluations of this unit

Students in the previous offering found this unit to be intellectually stimulating.

If you wish to view how previous students rated this unit, please go to
Unit Schedule

<table>
<thead>
<tr>
<th>Week</th>
<th>Activities</th>
<th>Assessment</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>No formal assessment or activities are undertaken in week 0</td>
<td>Tutorial 1</td>
</tr>
<tr>
<td>1</td>
<td>Introduction: Sockets, RPC, Objects, Clusters, Grids, Clouds; Administrative: Lab Registration; Check MURPA Schedule</td>
<td>Tutorial 2; Lab 1</td>
</tr>
<tr>
<td>2</td>
<td>Distributing Computing Schemes</td>
<td>Tutorial 3; Lab 2</td>
</tr>
<tr>
<td>3</td>
<td>Concurrency, Parallelism, Synchronisation, Deadlocks, Safety</td>
<td>Tutorial 4; Lab 3</td>
</tr>
<tr>
<td>4</td>
<td>Grid Middleware</td>
<td>Tutorial 5; Lab 4</td>
</tr>
<tr>
<td>5</td>
<td>Grid Security</td>
<td>Tutorial 6; Lab 5</td>
</tr>
<tr>
<td>6</td>
<td>Advanced Distributed Networking Technologies</td>
<td>Tutorial 7; Lab 6; Assignment 1 due Friday Week 7</td>
</tr>
<tr>
<td>7</td>
<td>Clusters and Distributed Programming Environments</td>
<td>Tutorial 8; Lab 7</td>
</tr>
<tr>
<td>8</td>
<td>High Performance Computing and Grids</td>
<td>Tutorial 9; Lab 8</td>
</tr>
<tr>
<td>9</td>
<td>Distributed Application Performance Modelling</td>
<td>Tutorial 10; Lab 9</td>
</tr>
<tr>
<td>10</td>
<td>Reliability of Distributed Applications</td>
<td>Tutorial 11; Lab 10</td>
</tr>
<tr>
<td>11</td>
<td>The Design of Distributed Applications</td>
<td>Tutorial 12; Lab 11; Assignment 2 due Friday Week 12</td>
</tr>
<tr>
<td>12</td>
<td>Limits to Distributed Application Performance</td>
<td>No formal assessment is undertaken in SWOT VAC</td>
</tr>
</tbody>
</table>

Unit Schedule details will be maintained and communicated to you via your MUSO (Blackboard or Moodle) learning system.
Assessment Requirements

Assessment Policy

Faculty Policy - Unit Assessment Hurdles

Academic Integrity - Please see the Demystifying Citing and Referencing tutorial at http://lib.monash.edu/tutorials/citing/

Assessment Tasks

Participation

To meet the learning objectives for this unit students are expected to attend 80% of Tutorials (MURPA) and 80% of Labs. Failure to meet these expectations may cause difficulties in passing the unit.

• Assessment task 1

Title: Assignment 1

Description:
This assignment will be a written report requiring some independent reading.

Further details will be provided during the semester.

Weighting: 10%

Criteria for assessment:
Individual assessment of independent work by student:

1. How well underlying principles and theories are demonstrated in the student's answers
2. The appropriateness of the formatted report style
3. The quality of the student's arguments

Due date: Friday Week 7

• Assessment task 2

Title: Assignment 2

Description:
This assignment will be a written report requiring some independent reading.

Further details will be provided during the semester.

Weighting: 10%

Criteria for assessment:
Individual assessment of independent work by student:

1. How well underlying principles and theories are demonstrated in the student's answers
Assessment Requirements

2. The appropriateness of the formatted report style
3. The quality of the student's arguments

Due date:
Friday Week 12

• Assessment task 3

Title:
Laboratory Work

Description:
Weekly laboratory exercises and tasks.

Weighting:
10%

Criteria for assessment:
Individual assessment of independent work by student:

1. Quality of solutions/answers to problems/questions (demonstrates understanding of learning materials)

Due date:
Weekly (starting Week 2)

• Assessment task 4

Title:
Tutorial Work

Description:
Weekly attendance of MURPA tutorials and reporting by students.

Weighting:
10%

Criteria for assessment:
Individual assessment of independent work by student:

1. How well underlying principles and theories are demonstrated in the student's answers
2. The appropriateness of the formatted report style
3. The quality of the student's arguments

Due date:
Weekly

Examinations

• Examination 1

Weighting:
60%

Length:
3 hours

Type (open/closed book):
Closed book

Electronic devices allowed in the exam:
Non programmable scientific calculator
Assignment submission

It is a University requirement (http://www.policy.monash.edu/policy-bank/academic/education/conduct/plagiarism-procedures.html) for students to submit an assignment coversheet for each assessment item. Faculty Assignment coversheets can be found at http://www.infotech.monash.edu.au/resources/student/forms/. Please check with your Lecturer on the submission method for your assignment coversheet (e.g. attach a file to the online assignment submission, hand-in a hard copy, or use an online quiz).

Online submission

If Electronic Submission has been approved for your unit, please submit your work via the VLE site for this unit, which you can access via links in the my.monash portal.

Extensions and penalties

Submission must be made by the due date otherwise penalties will be enforced.

Returning assignments

Students can expect assignments to be returned within two weeks of the submission date or after receipt, whichever is later.

Resubmission of assignments

Resubmission is not permitted.

Referencing requirements

External materials must be properly cited and referenced.
Other Information

Policies

Monash has educational policies, procedures and guidelines, which are designed to ensure that staff and students are aware of the University’s academic standards, and to provide advice on how they might uphold them. You can find Monash's Education Policies at: http://policy.monash.edu.au/policy-bank/academic/education/index.html

Key educational policies include:

- Plagiarism (http://www.policy.monash.edu/policy-bank/academic/education/conduct/plagiarism-policy.html)
- Special Consideration (http://www.policy.monash.edu/policy-bank/academic/education/assessment/special-consideration-policy.html)
- Grading Scale (http://www.policy.monash.edu/policy-bank/academic/education/assessment/grading-scale-policy.html)
- Discipline: Student Policy (http://www.policy.monash.edu/policy-bank/academic/education/conduct/student-discipline-policy.html)
- Academic Calendar and Semesters (http://www.monash.edu.au/students/key-dates/);
and

Student services

The University provides many different kinds of support services for you. Contact your tutor if you need advice and see the range of services available at www.monash.edu.au/students. For Sunway see http://www.monash.edu.my/Student-services, and for South Africa see http://www.monash.ac.za/current/

The Monash University Library provides a range of services and resources that enable you to save time and be more effective in your learning and research. Go to http://www.lib.monash.edu.au or the library tab in my.monash portal for more information. At Sunway, visit the Library and Learning Commons at http://www.lib.monash.edu.my/. At South Africa visit http://www.lib.monash.ac.za/.

Academic support services may be available for students who have a disability or medical condition. Registration with the Disability Liaison Unit is required. Further information is available as follows:

- Website: http://monash.edu/equity-diversity/disability/index.html;
- Email: dlu@monash.edu
- Drop In: Equity and Diversity Centre, Level 1 Gallery Building (Building 55), Monash University, Clayton Campus, or Student Community Services Department, Level 2, Building 2, Monash University, Sunway Campus
- Telephone: 03 9905 5704, or contact the Student Advisor, Student Community Services at 03 55146018 at Sunway