FIT5186
Intelligent systems

Unit Guide

Semester 1, 2014
FIT5186 Intelligent systems - Semester 1, 2014

This unit introduces main techniques widely used in intelligent software systems to students in the Master of Information Technology Systems course with the Network Computing major. Specifically, it focuses on the techniques in relation to network structures. Main topics covered include neural network models, supervised learning and classification, unsupervised learning and clustering, fuzzy logic, intelligent decision analysis, optimum network flow modelling, and recommender systems.

Workload Requirements

Minimum total expected workload equals 12 hours per week comprising:

(a.) Contact hours for on-campus students:

• Two hours of lectures
• One 2-hour laboratory

(b.) Additional requirements (all students):

• A minimum of 8 hours independent study per week for completing lab and project work, private study and revision.

Unit Relationships

Prerequisites

Fundamental mathematics

Chief Examiner

Associate Professor Chung-Hsing Yeh

Campus Lecturer

Your feedback to Us

Monash is committed to excellence in education and regularly seeks feedback from students, employers and staff. One of the key formal ways students have to provide feedback is through the Student Evaluation of Teaching and Units (SETU) survey. The University’s student evaluation policy requires that every unit is evaluated each year. Students are strongly encouraged to complete the surveys. The feedback is anonymous and provides the Faculty with evidence of aspects that students are satisfied and areas for improvement.

For more information on Monash’s educational strategy, see:

www.monash.edu.au/about/monash-directions/ and on student evaluations, see:
www.policy.monash.edu/policy-bank/academic/education/quality/student-evaluation-policy.html
Previous Student Evaluations of this Unit

In its second offering (2013) at the SEU-Monash Joint Graduate School in Suzhou, this unit has achieved a student evaluation score of 4.54 (out of 5) for the quality of the unit. Student feedback has shown that this unit is well structured and no changes are required for this semester. In particular, students are happy with the encouragement and helpful feedback they received from the lecturer for their active participation in this unit.

If you wish to view how previous students rated this unit, please go to https://emuapps.monash.edu.au/unitevaluations/index.jsp
Academic Overview

Learning Outcomes

On completion of this unit students will have a knowledge and understanding of:

- the applications of intelligent software systems;
- the principles and theoretical underpinning of intelligent software systems;
- the models and approaches to building intelligent software systems;
- the advantages and limitations of intelligent models and approaches for solving a wide range of practical problems;
- different software toolkits and development environments;
- current research trends in the field.
Unit Schedule

<table>
<thead>
<tr>
<th>Week</th>
<th>Activities</th>
<th>Assessment</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>No formal assessment or activities are undertaken in week 0</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Introduction to Intelligent Systems and Neural Networks</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Neuron Learning and Perceptrons</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Multilayered Networks</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Supervised Learning - Backpropagation Learning Rule</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Classification and Prediction with Case Studies</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Unsupervised Learning - Clustering with Self-Organisation</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Unsupervised Learning with Adaptive Resonance Theory</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Data Mining and Knowledge Discovery</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Other Intelligent Techniques</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Fuzzy Logic</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Business Intelligence Modelling - Decision Analysis under Uncertainty</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Decision Trees, Decision Making Using Sample Information; Revision and Exam Preparation</td>
<td></td>
</tr>
<tr>
<td>SWOT VAC</td>
<td></td>
<td>No formal assessment is undertaken in SWOT VAC</td>
</tr>
</tbody>
</table>

Unit Schedule details will be maintained and communicated to you via your learning system.

Teaching Approach

Lecture and tutorials or problem classes

This teaching and learning approach helps students to initially encounter information at lectures, discuss and explore the information during tutorials, and practice in a hands-on lab environment.

Assessment Summary

Examination (3 hours): 70%; In-semester assessment: 30%

<table>
<thead>
<tr>
<th>Assessment Task</th>
<th>Value</th>
<th>Due Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solving A Neural Network Problem</td>
<td>30%</td>
<td>29 May 2014</td>
</tr>
<tr>
<td>Examination 1</td>
<td>70%</td>
<td>To be advised</td>
</tr>
</tbody>
</table>
Assessment Requirements

Assessment Policy

Faculty Policy - Unit Assessment Hurdles

Academic Integrity - Please see resources and tutorials at
http://www.monash.edu/library/skills/resources/tutorials/academic-integrity/

Assessment Tasks

Participation

• Assessment task 1

 Title: Solving A Neural Network Problem
 Description: In this assignment, you will be applying what you have learnt about neural networks and the backpropagation learning algorithm to a forecasting, prediction or classification problem of your choice. You are required to write up your findings in the form of a short conference-type or journal-type paper with 1,500-2,500 words (5-8 pages). When you have identified your problem, you need to write a one-page proposal which outlines your problem, where you will get your data set, and the methodology you will use. This needs to be handed out to your tutor for approval during your tutorial in Week 8.

 Weighting: 30%
 Criteria for assessment: The assessment will be based on both contents and presentation. You must get permission from your tutor for the problem you choose to do. You are expected to train your network and perform some sort of analysis of the results. The more analysis you do, the more insight you will gain into the problem and the technique (and the more marks you will receive).

 Due date: 29 May 2014

Examinations

• Examination 1

 Weighting: 70%
 Length: 3 hours
 Type (open/closed book): Closed book
 Electronic devices allowed in the exam: Non-programmable calculators
Learning resources

Reading list

Recommended reading will be provided on the unit Moodle site.

Monash Library Unit Reading List (if applicable to the unit)
http://readinglists.lib.monash.edu/index.html

Faculty of Information Technology Style Guide

Feedback to you

Examination/other end-of-semester assessment feedback may take the form of feedback classes, provision of sample answers or other group feedback after official results have been published. Please check with your lecturer on the feedback provided and take advantage of this prior to requesting individual consultations with staff. If your unit has an examination, you may request to view your examination script booklet, see http://intranet.monash.edu.au/infotech/resources/students/procedures/request-to-view-exam-scripts.html

Types of feedback you can expect to receive in this unit are:

- Informal feedback on progress in labs/tutes
- Graded assignments with comments
- Solutions to tutes, labs and assignments

Extensions and penalties

Submission must be made by the due date otherwise penalties will be enforced.

You must negotiate any extensions formally with your campus unit leader via the in-semester special consideration process: http://www.monash.edu.au/exams/special-consideration.html

Returning assignments

Students can expect assignments to be returned within two weeks of the submission date or after receipt, whichever is later.

Assignment submission

It is a University requirement (http://www.policy.monash.edu/policy-bank/academic/education/conduct/student-academic-integrity-managing-plagiarism-collusion-procedures.html) for students to submit an assignment coversheet for each assessment item. Faculty Assignment coversheets can be found at http://www.infotech.monash.edu.au/resources/student/forms/. Please check with your Lecturer on the submission method for your assignment coversheet (e.g. attach a file to the online assignment submission, hand-in a hard copy, or use an online quiz). Please note that it is your responsibility to retain copies of your assessments.
Assessment Requirements

Online submission

If Electronic Submission has been approved for your unit, please submit your work via the Moodle site for this unit, which you can access via links in the my.monash portal.
Other Information

Policies

Monash has educational policies, procedures and guidelines, which are designed to ensure that staff and students are aware of the University’s academic standards, and to provide advice on how they might uphold them. You can find Monash’s Education Policies at: www.policy.monash.edu.au/policy-bank/academic/education/index.html

Key educational policies include:

- Student Academic Integrity Policy and Student Academic Integrity: Managing Plagiarism and Collusion Procedures; http://www.policy.monash.edu/policy-bank/academic/education/conduct/student-academic-integrity-policy.html
- Special Consideration; http://www.policy.monash.edu/policy-bank/academic/education/assessment/special-consideration-policy.html
- Grading Scale; http://www.policy.monash.edu/policy-bank/academic/education/assessment/grading-scale-policy.html
- Discipline: Student Policy; http://www.policy.monash.edu/policy-bank/academic/education/conduct/student-discipline-policy.html
- Academic Calendar and Semesters; http://www.monash.edu.au/students/dates/
- Orientation and Transition; http://intranet.monash.edu.au/infotech/resources/students/orientation/

Faculty resources and policies

Important student resources including Faculty policies are located at http://intranet.monash.edu.au/infotech/resources/students/.

Graduate Attributes Policy

http://www.policy.monash.edu/policy-bank/academic/education/management/monash-graduate-attributes-policy.html

Student Charter

Student services

The University provides many different kinds of support services for you. Contact your tutor if you need advice and see the range of services available at http://www.monash.edu.au/students. For Malaysia see http://www.monash.edu.my/Student-services, and for South Africa see http://www.monash.ac.za/current/.
Monash University Library

The Monash University Library provides a range of services, resources and programs that enable you to save time and be more effective in your learning and research. Go to www.lib.monash.edu.au or the library tab in my.monash portal for more information. At Malaysia, visit the Library and Learning Commons at http://www.lib.monash.edu.my/. At South Africa visit http://www.lib.monash.ac.za/.

Disability Liaison Unit

Students who have a disability or medical condition are welcome to contact the Disability Liaison Unit to discuss academic support services. Disability Liaison Officers (DLOs) visit all Victorian campuses on a regular basis.

- Website: http://www.monash.edu/equity-diversity/disability/index.html
- Telephone: 03 9905 5704 to book an appointment with a DLO; or contact the Student Advisor, Student Community Services at 03 55146018 at Malaysia
- Email: dlu@monash.edu
- Drop In: Equity and Diversity Centre, Level 1, Building 55, Clayton Campus, or Student Community Services Department, Level 2, Building 2, Monash University, Malaysia Campus