Table of Contents

FIT3042 System tools and programming languages - Semester 1, 2015..1

- Mode of Delivery...1
- Workload Requirements..1
- Unit Relationships..1
 - Prohibitions..1
 - Prerequisites..1

Chief Examiner...1

Campus Lecturer..1
 - Clayton..2
 - Malaysia..2

Tutors...2
 - Malaysia..2

Your feedback to Us..2

Previous Student Evaluations of this Unit...2

Academic Overview..3
 - Learning Outcomes..3

Unit Schedule..4
 - Teaching Approach...4
 - Assessment Summary...4

Assessment Requirements...5
 - Assessment Policy...5
 - Assessment Tasks...5
 - Participation..5

Examinations..6
 - Examination 1..6

Learning resources...6

Feedback to you..6

Extensions and penalties...6

Returning assignments...7

Resubmission of assignments...7

Referencing requirements..7

Assignment submission...7

Online submission...7

Required Resources...7
 - Recommended text(s)..8

Field trips..8

Additional subject costs..8

Examination material or equipment..8

Other Information..9
 - Policies...9
 - Faculty resources and policies..9
 - Graduate Attributes Policy..9

Student Charter..9

Student services...9

Monash University Library...9

Disability Liaison Unit...9

Other...10

Engineers Australia Stage 1 competencies...10

Relationship between Unit Learning Outcomes and BSE Course Outcomes..11

Relationship between Unit Learning Outcomes and Assessments..11
FIT3042 System tools and programming languages - Semester 1, 2015

This unit provides students with an introduction to UNIX tools for managing processes; searching, editing and modifying files and data streams; and command interpreters and shell scripts. In addition, students will learn about a typical system call interface and its use for systems programming in a language like C.

Mode of Delivery

- Clayton (Day)
- Malaysia (Day)

Workload Requirements

Minimum total expected workload equals 12 hours per week comprising:

(a.) Contact hours for on-campus students:

- Two hours of lectures
- One 2-hour laboratory

(b.) Additional requirements (all students):

- A minimum of 2-3 hours of personal study per one hour of contact time in order to satisfy the reading and assignment expectations.

See also Unit timetable information

Unit Relationships

Prohibitions

CSE2391, CSE3391

Prerequisites

One of FIT1008, FIT1015, FIT2085, CSE1303

Chief Examiner

Dr Peter Tischer

Campus Lecturer
Clayton

Peter Tischer

Consultation hours: Mondays 1.00pm - 2.00pm, appointments can also be arranged via email

Malaysia

Dr Ahmed Elmesiry

Consultation hours: Will be notified at the lecture.

Tutors

Malaysia

Dr Ahmed Elmesiry

Consultation hours: Will be notified at the lecture.

Your feedback to Us

Monash is committed to excellence in education and regularly seeks feedback from students, employers and staff. One of the key formal ways students have to provide feedback is through the Student Evaluation of Teaching and Units (SETU) survey. The University’s student evaluation policy requires that every unit is evaluated each year. Students are strongly encouraged to complete the surveys. The feedback is anonymous and provides the Faculty with evidence of aspects that students are satisfied and areas for improvement.

For more information on Monash’s educational strategy, see:

www.monash.edu.au/about/monash-directions/ and on student evaluations, see:
www.policy.monash.edu/policy-bank/academic/education/quality/student-evaluation-policy.html

Previous Student Evaluations of this Unit

The exam format will more closely reflect the language-oriented content of the unit.

Material relating to Makefiles has been expanded. Lab sheets have been restructured.

If you wish to view how previous students rated this unit, please go to
Academic Overview

Learning Outcomes

At the completion of this unit, students should be able to:

1. describe the relationship between Unix, Unix shells, and C language;
2. write programs using C's dynamic memory allocation to create standard container structures;
3. construct programs in C that use system calls to interact with the underlying operating environment;
4. use the Make utility to build programs written in C;
5. construct shell scripts that use standard POSIX filters in pipelines to achieve common tasks;
6. use regular expressions to perform text-processing tasks in shell and Perl on unstructured and semi-structured text;
7. build Perl scripts using Perl features such as hashes and references.
Unit Schedule

<table>
<thead>
<tr>
<th>Week</th>
<th>Activities</th>
<th>Assessment</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>No formal assessment or activities are undertaken in week 0</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Unit Introduction</td>
<td>Laboratory Exercises are assessed at the end of each lab session</td>
</tr>
<tr>
<td>2</td>
<td>Introduction to C, Make</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>C programming: Pointers & Data structures</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Unix C Programming</td>
<td>Assignment 1 handed out</td>
</tr>
<tr>
<td>5</td>
<td>Inter-process communication, third-party libraries</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Introduction to shell programming</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Shell filters</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Shell programming</td>
<td>Assignment 1 due Monday 27 April 2015</td>
</tr>
<tr>
<td>9</td>
<td>Regular expressions</td>
<td>Assignment 2 handed out</td>
</tr>
<tr>
<td>10</td>
<td>Perl 1: scalars & arrays</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Perl 2: Perl regexes</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SWOT VAC</td>
<td>No formal assessment is undertaken in SWOT VAC</td>
</tr>
</tbody>
</table>

*Unit Schedule details will be maintained and communicated to you via your learning system.

Teaching Approach

Lecture and tutorials or problem classes

The teaching and learning approach provides facilitated learning, practical exploration and peer learning, equipping you with the ability to apply skills upon completion.

Assessment Summary

Examination (3 hours): 50%; In-semester assessment: 50%

<table>
<thead>
<tr>
<th>Assessment Task</th>
<th>Value</th>
<th>Due Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assignment 1</td>
<td>20%</td>
<td>Monday 27 April 2015</td>
</tr>
<tr>
<td>Assignment 2</td>
<td>20%</td>
<td>Monday 25 May 2015</td>
</tr>
<tr>
<td>Laboratory Exercises</td>
<td>10%</td>
<td>At the end of each lab session</td>
</tr>
<tr>
<td>Examination 1</td>
<td>50%</td>
<td>To be advised</td>
</tr>
</tbody>
</table>
Assessment Requirements

Assessment Policy

Faculty Policy - Unit Assessment Hurdles

Academic Integrity - Please see resources and tutorials at http://www.monash.edu/library/skills/resources/tutorials/academic-integrity/

Assessment Tasks

Participation

Students are expected to attend at least 8 of the 11 labs.

• Assessment task 1

 Title: Assignment 1
 Description: C/Unix programming assignment
 Weighting: 20%
 Criteria for assessment:
 ♦ Correctness
 ♦ Efficiency
 ♦ Quality of solution
 ♦ Documentation
 Due date:
 Monday 27 April 2015

• Assessment task 2

 Title: Assignment 2
 Description: Shell/Perl programming assignment
 Weighting: 20%
 Criteria for assessment:
 ♦ Correctness
 ♦ Efficiency
 ♦ Quality of solution
 ♦ Documentation
 Due date:
 Monday 25 May 2015
Assessment Requirements

• **Assessment task 3**

 Title:
 Laboratory Exercises

 Description:
 Exercises held during laboratory sessions.

 Weighting:
 10%

 Criteria for assessment:
 Lab exercises are assessed during the scheduled laboratory session. Marks are awarded for successful completion of the laboratory exercises.

 Due date:
 At the end of each lab session

Examinations

• **Examination 1**

 Weighting:
 50%

 Length:
 3 hours

 Type (open/closed book):
 Open book

 Electronic devices allowed in the exam:
 None

Learning resources

Monash Library Unit Reading List (if applicable to the unit)
http://readinglists.lib.monash.edu/index.html

Feedback to you

Types of feedback you can expect to receive in this unit are:

- Informal feedback on progress in labs/tutes
- Graded assignments with comments
- Test results and feedback

Extensions and penalties

Submission must be made by the due date otherwise penalties will be enforced.

You must negotiate any extensions formally with your campus unit leader via the in-semester special consideration process: http://www.monash.edu.au/exams/special-consideration.html
Assessment Requirements

Returning assignments

Students can expect assignments to be returned within two weeks of the submission date or after receipt, whichever is later.

Resubmission of assignments

Multiple assignment submission may be enabled in Moodle. However, only the last version will be assessed. Resubmission after the due date will only be permitted after special consideration is granted through the regular faculty processes, or, occasionally, in other exceptional circumstances with lecturer permission. Penalties may apply in such circumstances.

Referencing requirements

Any written work must use appropriate referencing methods, according to the Library Guides for citing and referencing http://guides.lib.monash.edu/content.php?pid=88267&sid=656564

Generally, code submitted in your assignments should be your own original work. However, where code uses ideas from specific sources, they should be cited in comments.

Specific assignments may provide additional direction on referencing and reuse of third-party code.

Assignment submission

It is a University requirement (http://www.policy.monash.edu/policy-bank/academic/education/conduct/student-academic-integrity-managing-plagiarism-collusion-procedures.html) for students to submit an assignment coversheet for each assessment item. Faculty Assignment coversheets can be found at http://www.infotech.monash.edu.au/resources/student/forms/. Please check with your Lecturer on the submission method for your assignment coversheet (e.g. attach a file to the online assignment submission, hand-in a hard copy, or use an electronic submission). Please note that it is your responsibility to retain copies of your assessments.

Online submission

Most assignments will be submitted via the Moodle electronic learning system, which is accessed through the subject web page. The assignment coversheets will also be made available through Moodle.

Required Resources

Please check with your lecturer before purchasing any Required Resources. Limited copies of prescribed texts are available for you to borrow in the library, and prescribed software is available in student labs.

Students will be provided with a Linux-based virtual machine environment. The virtual machine will be made available in labs and can also be installed, using free software, on any PC.

As a virtual machine, it will run under the VMWare Player software (freely downloadable) as any other application under Windows, Mac, or another version of Linux.

Students may choose to use another Linux distribution if they wish, however no support will be provided for this.
Assessment Requirements

Recommended text(s)

Field trips

No field trips.

Additional subject costs

No additional costs.

Examination material or equipment

Exam details, including permitted equipment, will be announced on the unit website during the semester.
Other Information

Policies

Monash has educational policies, procedures and guidelines, which are designed to ensure that staff and students are aware of the University’s academic standards, and to provide advice on how they might uphold them. You can find Monash’s Education Policies at: www.policy.monash.edu.au/policy-bank/academic/education/index.html

Faculty resources and policies

Important student resources including Faculty policies are located at http://intranet.monash.edu.au/infotech/resources/students/

Graduate Attributes Policy

http://www.policy.monash.edu/policy-bank/academic/education/management/monash-graduate-attributes-policy.html

Student Charter

Student services

The University provides many different kinds of support services for you. Contact your tutor if you need advice and see the range of services available at http://www.monash.edu.au/students. For Malaysia see http://www.monash.edu.my/Student-services, and for South Africa see http://www.monash.ac.za/current/.

Monash University Library

The Monash University Library provides a range of services, resources and programs that enable you to save time and be more effective in your learning and research. Go to www.lib.monash.edu.au or the library tab in my.monash portal for more information. At Malaysia, visit the Library and Learning Commons at http://www.lib.monash.edu.my/. At South Africa visit http://www.lib.monash.ac.za/.

Disability Liaison Unit

Students who have a disability or medical condition are welcome to contact the Disability Liaison Unit to discuss academic support services. Disability Liaison Officers (DLOs) visit all Victorian campuses on a regular basis.

- Website: http://www.monash.edu/equity-diversity/disability/index.html
- Telephone: 03 9905 5704 to book an appointment with a DLO; or contact the Student Advisor, Student Community Services at 03 55146018 at Malaysia
- Email: dlu@monash.edu
- Drop In: Equity and Diversity Centre, Level 1, Building 55, Clayton Campus, or Student Community Services Department, Level 2, Building 2, Monash University, Malaysia Campus
Engineers Australia Stage 1 competencies

This unit is a core unit in the Bachelor of Software Engineering accredited by Engineers Australia. Engineers Australia Accreditation Policy of Professional Engineering Programs requires that programs demonstrate how engineering graduates are prepared for entry to the profession and achieve Stage 1 competencies. The following information describes how this unit contributes to the development of these competencies for the Bachelor of Software Engineering. (Note: not all competencies may be emphasised in this unit).

<table>
<thead>
<tr>
<th>Stage 1 competency</th>
<th>How the competency is developed in this unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Knowledge and Skills base</td>
<td></td>
</tr>
<tr>
<td>1.1. Comprehension, theory based understanding of the underpinning natural and physical sciences and the engineering fundamentals applicable to the engineering discipline.</td>
<td>The unit covers many theoretical aspects of computing which underpins the foundation of software engineering.</td>
</tr>
<tr>
<td>1.2. Conceptual understanding of the mathematics, numerical analysis, statistics, and computer and information sciences, which underpin the engineering discipline.</td>
<td>The Unix operating system and C language are two of the major exemplars of operating systems, and system programming languages. The students are also exposed to the concept of shell scripting, a fundamental concept in computing. Students are taught the in-depth theory and practice of the Unix system call interface, the C, shell, and Perl languages, and regular expressions. These are covered in lectures, labs, and assignments.</td>
</tr>
<tr>
<td>1.3. In-depth understanding of specialist bodies of knowledge within the engineering discipline.</td>
<td>Not a focus in this unit.</td>
</tr>
<tr>
<td>1.4. Discernment of knowledge development and research directions within the engineering discipline.</td>
<td>Lecture material discusses the historical context of Unix and C.</td>
</tr>
<tr>
<td>1.5. Knowledge of engineering design practice and contextual factors impacting the engineering discipline.</td>
<td>Not covered in this unit.</td>
</tr>
<tr>
<td>1.6. Understanding of the scope, principles, norms, accountabilities and bounds of sustainable engineering practice in the specific discipline.</td>
<td></td>
</tr>
<tr>
<td>2. Engineering application ability</td>
<td></td>
</tr>
<tr>
<td>2.1. Application of established engineering methods to complex engineering problem solving.</td>
<td>Scripting is introduced as a standard method to solve "glue" problems in computer systems. Regular expressions are used as a text-processing tool. Students are taught C, Perl and Shell in the Unix environment, one of the standard programming environments for server computing.</td>
</tr>
<tr>
<td>2.2 Fluent application of engineering techniques, tools and resources.</td>
<td>Not covered in this unit.</td>
</tr>
<tr>
<td>2.3. Application of systematic engineering synthesis and design processes.</td>
<td></td>
</tr>
<tr>
<td>2.4. Application of systematic approaches to the conduct and management of engineering projects.</td>
<td>Not covered in this unit.</td>
</tr>
<tr>
<td>3. Professional and personal attributes</td>
<td></td>
</tr>
</tbody>
</table>
Other Information

3.1. Ethical conduct and professional accountability. Not covered in this unit.

3.2. Effective oral and written communication in professional and lay domains. Not covered in this unit.

3.3. Creative, innovative and proactive demeanour. Not specifically covered in this unit.

3.4. Professional use and management of information. Not covered in this unit.

3.5. Orderly management of self, and professional conduct. Not covered in this unit.

3.6. Effective team membership and team leadership. Not covered in this unit.

Relationship between Unit Learning Outcomes and BSE Course Outcomes

No. CO 1 CO 2 CO 3 CO 4 CO 5 CO 6 CO 7 CO 8 CO 9 CO 10 CO 11 CO 12 CO 13
1 X X
2 X
3 X
4 X
5 X
6 X
7 X

Relationship between Unit Learning Outcomes and Assessments

No. Assignments Tests Practical Exercises Exam
1 X
2 X X
3 X X
4 X X
5 X X
6 X X
7 X X