Table of Contents

FIT4004 System validation and verification, quality and standards - Semester 1, 2015

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mode of Delivery</td>
<td>1</td>
</tr>
<tr>
<td>Workload Requirements</td>
<td>1</td>
</tr>
<tr>
<td>Additional workload requirements</td>
<td>1</td>
</tr>
<tr>
<td>Unit Relationships</td>
<td>1</td>
</tr>
<tr>
<td>Prohibitions</td>
<td>1</td>
</tr>
<tr>
<td>Prerequisites</td>
<td>1</td>
</tr>
<tr>
<td>Chief Examiner</td>
<td>2</td>
</tr>
<tr>
<td>Campus Lecturer</td>
<td>2</td>
</tr>
<tr>
<td>Clayton</td>
<td>2</td>
</tr>
<tr>
<td>Tutors</td>
<td>2</td>
</tr>
<tr>
<td>Clayton</td>
<td>2</td>
</tr>
<tr>
<td>Your feedback to Us</td>
<td>2</td>
</tr>
<tr>
<td>Previous Student Evaluations of this Unit</td>
<td>2</td>
</tr>
<tr>
<td>Academic Overview</td>
<td>3</td>
</tr>
<tr>
<td>Learning Outcomes</td>
<td>3</td>
</tr>
<tr>
<td>Unit Schedule</td>
<td>4</td>
</tr>
<tr>
<td>Teaching Approach</td>
<td>4</td>
</tr>
<tr>
<td>Assessment Summary</td>
<td>4</td>
</tr>
<tr>
<td>Assessment Requirements</td>
<td>6</td>
</tr>
<tr>
<td>Assessment Policy</td>
<td>6</td>
</tr>
<tr>
<td>Assessment Tasks</td>
<td>6</td>
</tr>
<tr>
<td>Participation</td>
<td>6</td>
</tr>
<tr>
<td>Examinations</td>
<td>8</td>
</tr>
<tr>
<td>Examination 1</td>
<td>8</td>
</tr>
<tr>
<td>Learning resources</td>
<td>8</td>
</tr>
<tr>
<td>Reading list</td>
<td>8</td>
</tr>
<tr>
<td>Feedback to you</td>
<td>8</td>
</tr>
<tr>
<td>Extensions and penalties</td>
<td>8</td>
</tr>
<tr>
<td>Returning assignments</td>
<td>9</td>
</tr>
<tr>
<td>Assignment submission</td>
<td>9</td>
</tr>
<tr>
<td>Online submission</td>
<td>9</td>
</tr>
<tr>
<td>Required Resources</td>
<td>9</td>
</tr>
<tr>
<td>Recommended Resources</td>
<td>9</td>
</tr>
<tr>
<td>Other Information</td>
<td>10</td>
</tr>
<tr>
<td>Policies</td>
<td>10</td>
</tr>
<tr>
<td>Faculty resources and policies</td>
<td>10</td>
</tr>
<tr>
<td>Graduate Attributes Policy</td>
<td>10</td>
</tr>
<tr>
<td>Student Charter</td>
<td>10</td>
</tr>
<tr>
<td>Student services</td>
<td>10</td>
</tr>
<tr>
<td>Monash University Library</td>
<td>10</td>
</tr>
<tr>
<td>Disability Liaison Unit</td>
<td>10</td>
</tr>
<tr>
<td>Other</td>
<td>11</td>
</tr>
<tr>
<td>Engineers Australia Stage 1 competencies</td>
<td>11</td>
</tr>
<tr>
<td>Relationship between Unit Learning Outcomes and BSE Course Outcomes</td>
<td>12</td>
</tr>
<tr>
<td>Relationship between Unit Learning Outcomes and Assessments</td>
<td>12</td>
</tr>
</tbody>
</table>
FIT4004 System validation and verification, quality and standards - Semester 1, 2015

This unit covers the fundamental products, processes and techniques for system validation and verifications including testing methodologies, static program analysis and code quality measurement and monitoring. Open-source tools will be used to apply in practice knowledge learnt about software testing from a theoretical perspective. Inspection and testing methodologies, analysis of artefacts, robustness, performance analysis configuration management, quality assurance plan and standards, compliance, assessment, certification issues are covered. It shows how to predict, analyse and control defects in complex software systems.

Mode of Delivery

Clayton (Day)

Workload Requirements

Minimum total expected workload equals 12 hours per week comprising:

(a.) Contact hours for on-campus students:

- Two hours of lectures
- One 1-hour tutorial

(b.) Additional requirements (all students):

- A minimum of 2-3 hours of personal study per one hour of contact time in order to satisfy the reading and assignment expectations.

See also Unit timetable information

Additional workload requirements

You will need to allocate one hour per week for unsupervised lab/tute activity in the MUSE Lab to get familiarised with tools, work on assignments and for self study.

Unit Relationships

Prohibitions

CSE4431

Prerequisites

MAT1830 and FIT2004 and FIT2024 and FIT3077
Chief Examiner

Dr Robert Merkel

Campus Lecturer

Clayton

Robert Merkel

Consultation hours: TBA - check Moodle page

Tutors

Clayton

Hong-Li Song

Your feedback to Us

Monash is committed to excellence in education and regularly seeks feedback from students, employers and staff. One of the key formal ways students have to provide feedback is through the Student Evaluation of Teaching and Units (SETU) survey. The University’s student evaluation policy requires that every unit is evaluated each year. Students are strongly encouraged to complete the surveys. The feedback is anonymous and provides the Faculty with evidence of aspects that students are satisfied and areas for improvement.

For more information on Monash’s educational strategy, see:

www.monash.edu.au/about/monash-directions/ and on student evaluations, see:
www.policy.monash.edu/policy-bank/academic/education/quality/student-evaluation-policy.html

Previous Student Evaluations of this Unit

Previous SETU feedback indicated problems with practical relevance and the technology stack used in assignments.

The course material has been completely rewritten from scratch with a greater practical focus, and the technology stack has been changed and simplified to bring the focus back on the testing and quality aspects rather than dealing with the limitations of unreliable tools.

If you wish to view how previous students rated this unit, please go to
Academic Overview

Learning Outcomes

On successful completion of this unit, students should be able to:

1. explain the importance of quality assurance in software engineering;
2. articulate the role of validation and verification methods in the system development life cycle; key issues in software testing, testing levels and testing techniques;
3. categorise and apply selection and combination of techniques and test related measures;
4. measure, evaluate and analyse software under test using different quality and complexity metrics;
5. develop adequate test cases to help detect software system defects using industry-strength IDEs, unit testing frameworks such as JUnit, code coverage tools such as Cobertura, and other similar products;
6. implement continuous integration (CI) at unit, integration & system testing level using a CI server such as Jenkins to automatically run regression test suites on the system under test.
Unit Schedule

<table>
<thead>
<tr>
<th>Week</th>
<th>Activities</th>
<th>Assessment</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td>No formal assessment or activities are undertaken in week 0</td>
</tr>
<tr>
<td>1</td>
<td>Overview, Fundamentals of software quality assurance</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Quality Assurance Plans</td>
<td>Weekly assessed Tutorial Participation starts in Week 2</td>
</tr>
<tr>
<td>3</td>
<td>Human review</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Types of testing</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Black box testing</td>
<td>Artifact Review due Week 5</td>
</tr>
<tr>
<td>6</td>
<td>White box testing</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Documenting testing</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Unit testing</td>
<td>Manual System Testing due Week 8</td>
</tr>
<tr>
<td>9</td>
<td>Unit testing II</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Integration Testing</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Metrics</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Frontiers of testing</td>
<td>Automated Unit Testing due Week 12</td>
</tr>
<tr>
<td></td>
<td>SWOT VAC</td>
<td>No formal assessment is undertaken in SWOT VAC</td>
</tr>
</tbody>
</table>

*Unit Schedule details will be maintained and communicated to you via your learning system.

Teaching Approach

Lecture and tutorials or problem classes

This teaching and learning approach provides facilitated learning, practical exploration and peer learning.

Assessment Summary

Examination (2 hours): 50%; In-semestern assessment: 50%

<table>
<thead>
<tr>
<th>Assessment Task</th>
<th>Value</th>
<th>Due Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Artifact Review</td>
<td>10%</td>
<td>Week 5</td>
</tr>
<tr>
<td>Manual System Testing</td>
<td>15%</td>
<td>Week 8</td>
</tr>
<tr>
<td>Automated Unit Testing</td>
<td>15%</td>
<td>Week 12</td>
</tr>
<tr>
<td>Tutorial Participation</td>
<td>10%</td>
<td>Weekly (starts in Week 2)</td>
</tr>
<tr>
<td>Examination 1</td>
<td>50%</td>
<td>To be advised</td>
</tr>
</tbody>
</table>
Unit Schedule
Assessment Requirements

Assessment Policy

Faculty Policy - Unit Assessment Hurdles

Academic Integrity - Please see resources and tutorials at
http://www.monash.edu/library/skills/resources/tutorials/academic-integrity/

Assessment Tasks

Participation

Students are expected to attend all tutorials and participate in active discussions. Tutorials will carry 10% assessment and will be assessed on participation.

• Assessment task 1

 Title: Artifact Review
 Description: Students will review provided software engineering artifacts, such as (but not limited to) requirements documents, design documents, or source code, using a structured review process. They will develop checklists for reviewing the artifacts, conduct the review according to the recommended process, and provide a written report of the review.
 Weighting: 10%
 Criteria for assessment: This assignment will be assessed on:
 ♦ appropriateness of checklists based on the artifact type and the context of the provided artifact.
 ♦ conformance with review process.
 ♦ thoroughness of review process.
 ♦ appropriateness of recommendations.
 Due date: Week 5

• Assessment task 2

 Title: Manual System Testing
 Description: Students will be provided with a software system, and associated artifacts, for which they will design and perform manual system testing.

 Students will choose, and document, an appropriate testing strategy based on the quality goals for the system.

 They will then devise a detailed suites of tests for the system, and document these for others to carry out.
Students will then swap test suites, and conduct manual system testing based on a fellow student’s test suite, and report the results of testing. They will also be asked to comment on the quality of the test suite that they used to conduct the manual testing.

Weighting:
15%

Criteria for assessment:

- Appropriateness of chosen test strategy.
- Selection of test cases according to the strategy.
- Comprehensiveness and accuracy of documentation
- Effectiveness of test suite.
- Reporting of test suite execution.

Due date:
Week 8

Assessment task 3

Title:
Automated Unit Testing

Description:
Students will devise and document a unit testing strategy for a provided software artifact. A test suite, using mocking frameworks to simulate other parts of the system where appropriate, will be devised according to the testing strategy and implemented using an automated unit testing framework. Continuous integration will be set up so that the automated testing takes place as the software code base evolves. Metrics for the comprehensiveness of the test suite and the quality of the codebase will be calculated as part of the CI process, and students will analyse the results of these metrics.

Weighting:
15%

Criteria for assessment:

- Reasonabiliteness of test strategy
- Conformance of test suite to test strategy
- Performance of test suite
- delivery of continuous integration
- calculation of metrics
- quality of analysis of metrics

Due date:
Week 12

Assessment task 4

Title:
Tutorial Participation

Description:
Tutorials run from Week 2 through to Week 12. As part of the tutorial process, students will be asked to present analysis of provided readings, and provide short answers to tutorial exercises. Presentations and some tutorial exercises will be marked.

Weighting:
10%

Criteria for assessment:

- Correctness of information presented
Quality of presentation
◆ Correctness and comprehensiveness of marked exercises.

Due date:
Weekly (starts in Week 2)

Examinations

• Examination 1

Weighting:
50%

Length:
2 hours

Type (open/closed book):
Open book

Electronic devices allowed in the exam:
None

Learning resources

Reading list

Extensive written course notes will be provided through Moodle.

A large collection of readings will also be made available. Some will be compulsory and this will be indicated on Moodle.

Monash Library Unit Reading List (if applicable to the unit)
http://readinglists.lib.monash.edu/index.html

Feedback to you

Types of feedback you can expect to receive in this unit are:

• Informal feedback on progress in labs/tutes
• Graded assignments without comments
• Solutions to tutes, labs and assignments

Extensions and penalties

Submission must be made by the due date otherwise penalties will be enforced.

You must negotiate any extensions formally with your campus unit leader via the in-semester special consideration process: http://www.monash.edu.au/exams/special-consideration.html
Returning assignments

Students can expect assignments to be returned within two weeks of the submission date or after receipt, whichever is later.

Assignment submission

It is a University requirement (http://www.policy.monash.edu/policy-bank/academic/education/conduct/student-academic-integrity-managing-plagiarism-collusion-procedures.html) for students to submit an assignment coversheet for each assessment item. Faculty Assignment coversheets can be found at http://www.infotech.monash.edu.au/resources/student/forms/. Please check with your Lecturer on the submission method for your assignment coversheet (e.g. attach a file to the online assignment submission, hand-in a hard copy, or use an electronic submission). Please note that it is your responsibility to retain copies of your assessments.

Online submission

If Electronic Submission has been approved for your unit, please submit your work via the learning system for this unit, which you can access via links in the my.monash portal.

Required Resources

Please check with your lecturer before purchasing any Required Resources. Limited copies of prescribed texts are available for you to borrow in the library, and prescribed software is available in student labs.

The MUSE Lab in Bldg 26/G13 is the lab used for this unit. However, students can install the required software on their personal computers to minimise interruptions to development and testing. The required software includes:

- A working Python installation.
- A git client.

Recommended Resources

Students are encouraged to use their own personal computers to work on project assignments. All required software can be downloaded and installed onto personal computers.
Other Information

Policies
Monash has educational policies, procedures and guidelines, which are designed to ensure that staff and students are aware of the University’s academic standards, and to provide advice on how they might uphold them. You can find Monash’s Education Policies at:

Faculty resources and policies
Important student resources including Faculty policies are located at
http://intranet.monash.edu.au/infotech/resources/students/

Graduate Attributes Policy
http://www.policy.monash.edu/policy-bank/academic/education/management/monash-graduate-attributes-policy.html

Student Charter

Student services
The University provides many different kinds of support services for you. Contact your tutor if you need advice and see the range of services available at http://www.monash.edu.au/students. For Malaysia see http://www.monash.edu.my/Student-services, and for South Africa see http://www.monash.ac.za/current/.

Monash University Library
The Monash University Library provides a range of services, resources and programs that enable you to save time and be more effective in your learning and research. Go to www.lib.monash.edu.au or the library tab in my.monash portal for more information. At Malaysia, visit the Library and Learning Commons at http://www.lib.monash.edu.my/. At South Africa visit http://www.lib.monash.ac.za/.

Disability Liaison Unit
Students who have a disability or medical condition are welcome to contact the Disability Liaison Unit to discuss academic support services. Disability Liaison Officers (DLOs) visit all Victorian campuses on a regular basis.

- Website: http://www.monash.edu/equity-diversity/disability/index.html
- Telephone: 03 9905 5704 to book an appointment with a DLO; or contact the Student Advisor, Student Community Services at 03 55146018 at Malaysia
- Email: dlu@monash.edu
- Drop In: Equity and Diversity Centre, Level 1, Building 55, Clayton Campus, or Student Community Services Department, Level 2, Building 2, Monash University, Malaysia Campus
Engineers Australia Stage 1 competencies

This unit is a core unit in the Bachelor of Software Engineering accredited by Engineers Australia. Engineers Australia Accreditation Policy of Professional Engineering Programs requires that programs demonstrate how engineering graduates are prepared for entry to the profession and achieve Stage 1 competencies. The following information describes how this unit contributes to the development of these competencies for the Bachelor of Software Engineering. (Note: not all competencies may be emphasised in this unit).

Stage 1 competency

1. **Knowledge and Skills base**
 1.1. **Comprehension, theory based understanding** of the underpinning natural and physical sciences and the engineering fundamentals applicable to the engineering discipline.

 Theoretical lecture materials, prescribed texts and recommended reading, tutorials.

 1.2. **Conceptual understanding** of the mathematics, numerical analysis, statistics, and computer and information sciences, which underpin the engineering discipline.

 Lectures and tutorial exercises on discrete mathematics relevant to software testing.

 1.3. **In-depth understanding** of specialist bodies of knowledge within the engineering discipline.

 Lectures on testing techniques and methodologies, tutorials, and projects.

 1.4. **Discernment** of knowledge development and research directions within the engineering discipline.

 Lectures on testing techniques and methodologies, tutorials, and projects.

 1.5. **Knowledge** of engineering design practice and contextual factors impacting the engineering discipline.

 Lectures, tutorials, and projects involve the consideration of techniques in the contexts of SE project types.

 1.6. **Understanding** of the scope, principles, norms, accountabilities and bounds of sustainable engineering practice in the specific discipline.

 Limited discussion in lectures of responsibilities of testers.

2. **Engineering application ability**

2.1. **Application** of established engineering methods to complex engineering problem solving.

Lectures, labs and tutorials teach standard software testing techniques and processes.

2.2 **Fluent application** of engineering techniques, tools and resources.

As well as discussed in 2.1, projects involve the use of standard testing and CI tools.

2.3. **Application** of systematic engineering synthesis and design processes.

Design is not a focus of the unit.

2.4. **Application** of systematic approaches to the conduct and management of engineering projects.

Management is not a focus of the unit.

3. **Professional and personal attributes**

3.1. **Ethical** conduct and professional accountability.

Responsibilities of testers are discussed briefly in lectures, but not a major focus of the unit.

3.2. **Effective** oral and written communication in professional and lay domains.

Testability of requirements and reporting is covered in
3.3. Creative, innovative and proactive demeanour. Not a major focus of the unit.
3.4. Professional use and management of information. Not covered in this unit.
3.5. Orderly management of self, and professional conduct. Not relevant to this unit.
3.6. Effective team membership and team leadership. Not covered in this unit.

Relationship between Unit Learning Outcomes and BSE Course Outcomes

<table>
<thead>
<tr>
<th>No.</th>
<th>CO 1</th>
<th>CO 2</th>
<th>CO 3</th>
<th>CO 4</th>
<th>CO 5</th>
<th>CO 6</th>
<th>CO 7</th>
<th>CO 8</th>
<th>CO 9</th>
<th>CO 10</th>
<th>CO 11</th>
<th>CO 12</th>
<th>CO 13</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>X</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>X</td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>X</td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>X</td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

Relationship between Unit Learning Outcomes and Assessments

<table>
<thead>
<tr>
<th>No.</th>
<th>Assignments</th>
<th>Tests</th>
<th>Practical Exercises</th>
<th>Exam</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>3</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>4</td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>5</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>6</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>7</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>