Table of Contents

FIT5167 Natural computation for intelligent systems - Semester 1, 2015

- Mode of Delivery ... 1
- Workload Requirements ... 1
- Unit Relationships ... 1
 Prohibitions ... 1
- Chief Examiner ... 1
- Campus Lecturer ... 1
 Caulfield ... 1
- Your feedback to Us ... 2
- Previous Student Evaluations of this Unit 2

Academic Overview

- Learning Outcomes .. 3

Unit Schedule

- Teaching Approach ... 4
- Assessment Summary ... 4

Assessment Requirements

- Assessment Policy .. 6
- Assessment Tasks .. 6
 Participation ... 6
- Examinations .. 7
 Examination 1 ... 7
- Learning resources ... 7
- Reading list .. 7
- Feedback to you .. 8
- Extensions and penalties .. 8
- Returning assignments .. 8
- Assignment submission .. 8
- Online submission .. 8
- Required Resources ... 8
- Examination material or equipment 9

Other Information

- Policies .. 10
- Faculty resources and policies ... 10
 Graduate Attributes Policy .. 10
- Student Charter ... 10
- Student services .. 10
- Monash University Library ... 10
- Disability Liaison Unit ... 10
FIT5167 Natural computation for intelligent systems - Semester 1, 2015

This unit looks at the development and application of biologically inspired models of computation. We study: basic components of a natural neural systems: synapses, dendrites and neurons and their computational models; fundamental concepts of data and signal encoding and processing; neural network architectures: pattern association networks, auto associative networks, feedforward networks, competitive networks, self organizing networks and recurrent networks; plasticity and learning. Hebb rule, supervised learning, reinforced learning, error-correcting learning, unsupervised learning, competitive learning, self-organization.

Mode of Delivery

Caulfield (Day)

Workload Requirements

Minimum total expected workload equals 12 hours per week comprising:

(a.) Contact hours for on-campus students:

- Two hours of lectures
- One 2-hour laboratory

(b.) Additional requirements (all students):

- A minimum of 8 hours independent study per week for completing lab and project work, private study and revision.

See also Unit timetable information

Unit Relationships

Prohibitions

CSE5301

Chief Examiner

Dr Grace Rumantir

Campus Lecturer

Caulfield

Grace Rumantir

Consultation hours: TBA
Your feedback to Us

Monash is committed to excellence in education and regularly seeks feedback from students, employers and staff. One of the key formal ways students have to provide feedback is through the Student Evaluation of Teaching and Units (SETU) survey. The University’s student evaluation policy requires that every unit is evaluated each year. Students are strongly encouraged to complete the surveys. The feedback is anonymous and provides the Faculty with evidence of aspects that students are satisfied and areas for improvement.

For more information on Monash’s educational strategy, see:

www.monash.edu.au/about/monash-directions/ and on student evaluations, see:
www.policy.monash.edu/policy-bank/academic/education/quality/student-evaluation-policy.html

Previous Student Evaluations of this Unit

This unit was offered for the first time in Semester 1, 2010. It has consistently been getting well above 4 out of 5 on every question in the unit evaluation with close to 100% response rate every year. We will try to continue maintaining the high quality of the unit this year. Most notable characteristics of the unit as pointed out by previous student feedback are:

- It covers topics that technical but highly relevant in practical use in the industry
- Unit materials are structured in a well organised manner
- Delivery of unit materials is done in a friendly interactive manner
- Weekly quizzes help students in their self study during the week
- Timely feedback on formal assessments
- Feedback from students for improving the quality and delivery of the unit are sought out throughout the semester

If you wish to view how previous students rated this unit, please go to
Academic Overview

Learning Outcomes

At the completion of this unit students will:

• understand basic computational principles underlying the operations of biological neural systems;
• have knowledge of computational methods of simulating biological and artificial neural systems;
• have knowledge of supervised, unsupervised and self-organising neuronal learning systems;
• be able to use computer software to simulate behaviour of neurons and neural networks.
Unit Schedule

<table>
<thead>
<tr>
<th>Week</th>
<th>Activities</th>
<th>Assessment</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td>No formal assessment or activities are undertaken in week 0</td>
</tr>
<tr>
<td>1</td>
<td>Introduction</td>
<td>There is a self-assessed test (not marked) on basic maths and statistics on Moodle that will be discussed in the Week 1 tutorial. Please complete this to see if you need to do further study prior to completing this unit.</td>
</tr>
<tr>
<td>2</td>
<td>Artificial Neural Networks: an Overview</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Perceptron for Linear Pattern Classification</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Neural Networks for Non-linear Pattern Recognition 1</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Neural Networks for Non-linear Pattern Recognition 2</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Generalisation and Improving Neural Networks Performance</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Unsupervised Classification with Self Organising Maps</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Unit Test (in lecture time slot, tutorials still on)</td>
<td>Unit Test during Week 8 lecture (Monday 27 April 2015)</td>
</tr>
<tr>
<td>9</td>
<td>Associative Memory Networks</td>
<td>Assignment Stage 1 during Week 9 tutorial</td>
</tr>
<tr>
<td>10</td>
<td>Neural Networks for Time series Forecasting</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Recurrent Networks for Time series Forecasting</td>
<td>Assignment Stage 2 due start of Week 11 lecture (Monday 18 May 2015)</td>
</tr>
<tr>
<td>12</td>
<td>Revision</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SWOT VAC</td>
<td>No formal assessment is undertaken in SWOT VAC</td>
</tr>
</tbody>
</table>
Unit Schedule

<table>
<thead>
<tr>
<th>Course</th>
<th>Weight</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unit Test</td>
<td>20%</td>
<td>Unit Test during Week 8 lecture (Monday 27 April 2015)</td>
</tr>
<tr>
<td>Applications of Neural Network Algorithms</td>
<td>20%</td>
<td>Assignment Stage 1 during Week 9 tutorial, Assignment Stage 2 due start of Week 11 lecture (Monday 18 May 2015)</td>
</tr>
<tr>
<td>Examination 1</td>
<td>60%</td>
<td>To be advised</td>
</tr>
</tbody>
</table>
Assessment Requirements

Assessment Policy

Faculty Policy - Unit Assessment Hurdles

Academic Integrity - Please see resources and tutorials at
http://www.monash.edu/library/skills/resources/tutorials/academic-integrity/

Assessment Tasks

Participation

• Assessment task 1

 Title: Unit Test

 Description: Closed-book unit test to be conducted in the lecture time slot in Week 8.

 Weighting: 20%

 Criteria for assessment: Correct answers to questions, and quality of solutions to problems, which demonstrates understanding of the learning materials.

 Further detail of the format and coverage of the unit test will be made available on Moodle.

 Due date: Unit Test during Week 8 lecture (Monday 27 April 2015)

 Remarks: The unit test will be conducted during the Week 8 lecture time slot. Week 8 tutorials will still run as per normal.

• Assessment task 2

 Title: Applications of Neural Network Algorithms

 Description: Students are to build neural network models for a given data set and provide analysis thereof.

 Weighting: 20%

 Criteria for assessment: The assignment will be in paired groups.

 Stage 1: Write up of problem definition, data analysis and pre-processing, and design of experiments (non assessable).

 Stage 2: Submission (20%).

 Students will be assessed on:
Assessment Requirements

♦ The degree to which the submission meet the assignment specification.
♦ The quality of the data preprocessing and the design of experiments.
♦ How well the experiments are conducted and summarised.
♦ How well the results of the experiments are analysed and documented.

The tutor will monitor individual contributions when allocating marks to members of the group.

Further assessment criteria and marking sheet will be made available on the unit Moodle site.

Due date:
Assignment Stage 1 during Week 9 tutorial, Assignment Stage 2 due start of Week 11 lecture (Monday 18 May 2015)

Remarks:
The assignment is to be submitted at the start of the Week 11 lecture. Penalty for late submission applies.

Examinations

• Examination 1

Weighting: 60%

Length: 3 hours

Type (open/closed book): Closed book

Electronic devices allowed in the exam: Scientific Calculator

Learning resources

Reading list

• S. Samarasinghe, Neural Networks for Applied Sciences and Engineering: From Fundamentals to Complex Pattern Recognition, Auerbach Publications, 2007 (e-book from Monash Library)
• G. Dreyfus, Neural Networks: Methodology and Applications, Springer-Verlag Berlin Heidelberg, 2005 (e-book)
• C. Bishop, Neural Networks for Pattern Recognition, Oxford University Press, 2005

Monash Library Unit Reading List (if applicable to the unit)
http://readinglists.lib.monash.edu/index.html
Feedback to you

Types of feedback you can expect to receive in this unit are:

- Informal feedback on progress in labs/tutes
- Graded assignments with comments
- Interviews
- Test results and feedback
- Quiz results
- Solutions to tutes, labs and assignments

Extensions and penalties

Submission must be made by the due date otherwise penalties will be enforced.

You must negotiate any extensions formally with your campus unit leader via the in-semester special consideration process: http://www.monash.edu.au/exams/special-consideration.html

Returning assignments

Students can expect assignments to be returned within two weeks of the submission date or after receipt, whichever is later.

Assignment submission

It is a University requirement (http://www.policy.monash.edu/policy-bank/academic/education/conduct/student-academic-integrity-managing-plagiarism-collusion-procedures.html) for students to submit an assignment coversheet for each assessment item. Faculty Assignment coversheets can be found at http://www.infotech.monash.edu.au/resources/student/forms/. Please check with your Lecturer on the submission method for your assignment coversheet (e.g. attach a file to the online assignment submission, hand-in a hard copy, or use an electronic submission). Please note that it is your responsibility to retain copies of your assessments.

Online submission

If Electronic Submission has been approved for your unit, please submit your work via the learning system for this unit, which you can access via links in the my.monash portal.

Required Resources

Please check with your lecturer before purchasing any Required Resources. Limited copies of prescribed texts are available for you to borrow in the library, and prescribed software is available in student labs.

You will need access to a Neural Network tool such as:

- Matlab 2014b with Neural Network Toolbox
- Weka (available free from http://www.cs.waikato.ac.nz/ml/weka/)
- Emergent (available free from http://grey.colorado.edu/emergent/index.php/Main_Page)
- SNNS (available free from www.ra.cs.uni-tuebingen.de/SNNS)
All the above softwares are available in the 24 hour labs B3.45, B3.46, B3.46b at the Caulfield Campus. Submit an online IT request to gain access to these labs at http://www1.infotech.monash.edu.au/webservices/servicedesk/requestform/

Examination material or equipment

Scientific Calculator
Other Information

Policies

Monash has educational policies, procedures and guidelines, which are designed to ensure that staff and students are aware of the University’s academic standards, and to provide advice on how they might uphold them. You can find Monash’s Education Policies at: www.policy.monash.edu.au/policy-bank/academic/education/index.html

Faculty resources and policies

Important student resources including Faculty policies are located at http://intranet.monash.edu.au/infotech/resources/students/

Graduate Attributes Policy

http://www.policy.monash.edu/policy-bank/academic/education/management/monash-graduate-attributes-policy.html

Student Charter

Student services

The University provides many different kinds of support services for you. Contact your tutor if you need advice and see the range of services available at http://www.monash.edu.au/students. For Malaysia see http://www.monash.edu.my/Student-services, and for South Africa see http://www.monash.ac.za/current/.

Monash University Library

The Monash University Library provides a range of services, resources and programs that enable you to save time and be more effective in your learning and research. Go to www.lib.monash.edu.au or the library tab in my.monash portal for more information. At Malaysia, visit the Library and Learning Commons at http://www.lib.monash.edu.my/. At South Africa visit http://www.lib.monash.ac.za/.

Disability Liaison Unit

Students who have a disability or medical condition are welcome to contact the Disability Liaison Unit to discuss academic support services. Disability Liaison Officers (DLOs) visit all Victorian campuses on a regular basis.

- Website: http://www.monash.edu/equity-diversity/disability/index.html
- Telephone: 03 9905 5704 to book an appointment with a DLO; or contact the Student Advisor, Student Community Services at 03 55146018 at Malaysia
- Email: dlu@monash.edu
- Drop In: Equity and Diversity Centre, Level 1, Building 55, Clayton Campus, or Student Community Services Department, Level 2, Building 2, Monash University, Malaysia Campus