Table of Contents

ENG1003 Engineering mobile apps - Semester 2, 2015

Mode of Delivery .. 1
Workload Requirements ... 1
Chief Examiner ... 1
Campus Lecturer .. 1
Clayton ... 1
Malaysia .. 1
Your feedback to Us ... 1

Academic Overview .. 3
Learning Outcomes ... 3

Unit Schedule ... 4
Teaching Approach ... 5
Assessment Summary .. 5

Assessment Requirements ... 6
Assessment Policy .. 6
Assessment Tasks .. 6
Hurdle Requirements .. 6
Participation .. 6
Examinations .. 9
Examination 1 ... 9
Learning resources .. 9
Feedback to you .. 9
Extensions and penalties ... 9
Returning assignments .. 9
Assignment submission ... 9
Online submission .. 10

Other Information .. 11
Policies ... 11
Faculty resources and policies .. 11
Graduate Attributes Policy ... 11
Student Charter .. 11
Student services ... 11
Monash University Library .. 11
Disability Liaison Unit .. 11
Other ... 11

Engineers Australia Stage 1 competencies .. 12
Relationship between Unit Learning Outcomes and BSE Course Outcomes 13
Relationship between Unit Learning Outcomes and Assessments ... 13
ENG1003 Engineering mobile apps - Semester 2, 2015

This unit introduces students to the use of Information Technology (IT) in modern engineering practice. Students will learn an object-oriented approach to both computer systems and software engineering for solving engineering problems.

Students will work in small teams to develop a mobile application that meets a contemporary need in engineering. The fundamental stages in the software development lifecycle will be introduced, including requirements analysis, design, implementing and testing. Students will use IT tools to support the engineering process.

Mode of Delivery

- Clayton (Day)
- Malaysia (Day)

Workload Requirements

2 hours lectures, 3 hours of laboratory/workshop activities and 7 hours of private study per week.

See also Unit timetable information

Chief Examiner

Professor Jamie Evans

Campus Lecturer

Clayton

Stephen Huxford

Marc Cheong

Malaysia

Deepti Mishra

Your feedback to Us

Monash is committed to excellence in education and regularly seeks feedback from students, employers and staff. One of the key formal ways students have to provide feedback is through the Student Evaluation of Teaching and Units (SETU) survey. The University’s student evaluation policy requires that every unit is evaluated each year. Students are strongly encouraged to complete the surveys. The feedback is anonymous and provides the Faculty with evidence of aspects that students are satisfied and areas for improvement.

For more information on Monash's educational strategy, see:
www.monash.edu.au/about/monash-directions/ and on student evaluations, see:
www.policy.monash.edu/policy-bank/academic/education/quality/student-evaluation-policy.html
Academic Overview

Learning Outcomes

On successful completion of this unit students should be able to:

1. describe, with examples, the multidisciplinary nature of modern engineering problems
2. describe the interaction between developments in IT and their use in modern engineering practice
3. create and evaluate a simple multi-platform object-oriented architecture design
4. design and implement a mobile application that utilises the device capabilities to solve an engineering problem
5. design and perform simple black box acceptance testing
6. use IT tools, including an Integrated Development Environment (IDE), shared code repository and version control, bug-tracking and design drawing tools, for aspects of the software development process
7. interpret and produce written technical documentation in standard design formalism
8. complete tasks as part of a team, and communicate effectively with team members
9. communicate effectively with clients as part of the software development process
Unit Schedule

<table>
<thead>
<tr>
<th>Week</th>
<th>Activities</th>
<th>Assessment</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Pre-reading for week 1. Complete Belbin survey. See http://eng1003.eng.monash.edu/</td>
<td>No formal assessment or activities are undertaken in week 0</td>
</tr>
<tr>
<td>1</td>
<td>Quiz. 3-hour lab class. Pre-reading for week 2. 2-hour Workshop: Unit motivation, admin, and overview, HTML + CSS + JavaScript + DOM = Web App</td>
<td>Quiz. Lab.</td>
</tr>
<tr>
<td>2</td>
<td>Quiz. 3-hour lab class Pre-reading for week 3. 2-hour Workshop: Mobile Web Apps, Variables, data types, operations, coding environments, debuggers and debugging</td>
<td>Quiz. Lab.</td>
</tr>
<tr>
<td>3</td>
<td>Quiz. 3-hour lab class Pre-reading for week 4. 2-hour Workshop: Control structures - selection and iteration, processing arrays and objects</td>
<td>Quiz. Lab.</td>
</tr>
<tr>
<td>4</td>
<td>Quiz. 3-hour lab class Pre-reading for week 5. 2-hour Workshop: Functions, variable scope and lifetime, script execution order, timers, event handlers, manipulating the DOM</td>
<td>Quiz. Lab.</td>
</tr>
<tr>
<td>5</td>
<td>Quiz. 3-hour lab class. Pre-reading for week 6. 2-hour Workshop: Object Orientation, OO and JavaScript</td>
<td>Quiz. Lab.</td>
</tr>
<tr>
<td>6</td>
<td>Quiz. 3-hour lab class. Pre-reading for week 7. 2-hour Workshop: Selected additional JavaScript topics (e.g. local storage, HTML5 canvas, etc)</td>
<td>Quiz. Lab. Assignment 1 due.</td>
</tr>
<tr>
<td>7</td>
<td>Quiz. 3-hour lab class. Pre-reading for week 8. 2-hour Workshop: Software and software engineering</td>
<td>Quiz. Lab. Assignment 1 presentation (in lab time)</td>
</tr>
<tr>
<td>8</td>
<td>Quiz. 3-hour lab class. Pre-reading for week 9. 2-hour Workshop: Software engineering processes, software testing</td>
<td>Quiz. Lab.</td>
</tr>
<tr>
<td>9</td>
<td>Quiz. 3-hour lab class. Pre-reading for week 10. 2-hour Workshop: Algorithms and data structures</td>
<td>Quiz. Lab.</td>
</tr>
<tr>
<td>10</td>
<td>Quiz. 3-hour lab class. Pre-reading for week 11. 2-hour Workshop: Systems, Networks</td>
<td>Quiz. Lab.</td>
</tr>
<tr>
<td>11</td>
<td>Quiz. 3-hour lab class. Pre-reading for week 12. 2-hour Workshop: Networks, User interfaces.</td>
<td>Quiz. Lab. Assignment 2 due.</td>
</tr>
<tr>
<td>12</td>
<td>Quiz. 3-hour lab class. 2-hour Workshop: Further issues in engineering mobile apps</td>
<td>Quiz. Lab. "Client" team presentation (in lab time).</td>
</tr>
<tr>
<td>SWOT VAC</td>
<td></td>
<td>No formal assessment is undertaken during SWOT VAC</td>
</tr>
</tbody>
</table>

Unit Schedule details will be maintained and communicated to you via your learning system.
Teaching Approach

Other

The teaching approach is flipped classroom. Students will be introduced to topics via online ePub and video material. Lectures will be expert-led sessions where concepts are demonstrated interactively with the class. Students will gain practical experience via hands-on lab classes.

Assessment Summary

Continuous assessment: 60%
Examination (3 hours): 40%

Students are required to achieve at least 45% in the total continuous assessment component and at least 45% in the final examination component and an overall mark of 50% to achieve a pass grade in the unit. Students failing to achieve this requirement will be given a maximum of 45% in the unit.

<table>
<thead>
<tr>
<th>Assessment Task</th>
<th>Value</th>
<th>Due Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weekly pre-lecture quizzes</td>
<td>10%</td>
<td>Weekly, before delivery of the first Workshop (lecture) each week.</td>
</tr>
<tr>
<td>Assignment 1: Coding of a Mobile Web App</td>
<td>10%</td>
<td>End of week 6. Team presentation during week 7 lab class.</td>
</tr>
<tr>
<td>Assignment 2: Development of a Mobile Web App</td>
<td>16%</td>
<td>End of week 11.</td>
</tr>
<tr>
<td>Lab work assessments</td>
<td>20%</td>
<td>The end of each lab</td>
</tr>
<tr>
<td>Group "Client" Presentation</td>
<td>4%</td>
<td>Week 12 Lab</td>
</tr>
<tr>
<td>Examination 1</td>
<td>40%</td>
<td>To be advised</td>
</tr>
</tbody>
</table>

Unit Schedule
Assessment Requirements

Assessment Policy

Faculty Policy - Unit Assessment Hurdles

Academic Integrity - Please see resources and tutorials at
http://www.monash.edu/library/skills/resources/tutorials/academic-integrity/

Assessment Tasks

Hurdle Requirements

Students are required to achieve at least 45% in the total continuous assessment component and at least 45% in the final examination component and an overall mark of 50% to achieve a pass grade in the unit. Students failing to achieve this requirement will be given a maximum of 45% in the unit.

Participation

• Assessment task 1

 Title: Weekly pre-lecture quizzes
 Description: You will complete a total of twelve online weekly quizzes. They will test that students have read and comprehended the week’s preparatory ePub and video material.

 Each quiz will be worth 2% of a student's final mark for the unit (best 10 quiz marks out of a possible 12 will be used).

 This assessment relates to learning outcomes: 1, 2

 Weighting: 10%

 Criteria for assessment:

 ♦ Comprehension of weekly preparatory materials

 Due date: Weekly, before delivery of the first Workshop (lecture) each week.

• Assessment task 2

 Title: Assignment 1: Coding of a Mobile Web App
 Description: As a member of your assigned project team, you will create a Mobile Web App that uses a device’s sensors to solve a real-world engineering problem (skeleton code will be provided). The source code of your app will be submitted as a team. (7%).

 Your team will deliver a 10 minute oral presentation (in lab class) describing and demonstrating your app and detailing any issues you encountered. (3%)
This assessment relates to learning outcomes: 3, 4, 5, 6, 7, 8, 9

Weighting:
10%

Criteria for assessment:

♦ Correctness of the produced app
♦ Quality of app source code, including code documentation
♦ Clarity and quality of oral presentation

You and your team member will receive a combined mark, except:

♦ Your presentation will be assessed individually.
♦ Individual's marks will subject to peer review moderation based on CATME® feedback and scaling factors

Due date:
End of week 6. Team presentation during week 7 lab class.

Assessment task 3

Title:
Assignment 2: Development of a Mobile Web App

Description:
As a member of your assigned project team, you will create a Mobile Web App that uses a device's sensors to solve a real-world engineering problem (skeleton code will be provided). The source code of your app and associated documentation will be submitted as a team (stage 1: 2%, stage 2: 8%).

You will use a source code editor and debugger for writing code. You will use a shared version control system for managing revisions of the app source and handling commits by multiple team members. You will use an online software for document management, team communication, project management and issue tracking. Individuals use of these tools will be used to moderate your final mark for Assignment 2.

Your team will produce technical documentation including a user guide and a project management plan. Teams will be assessed based on the quality of these documents (worth 6%).

This assessment relates to learning outcomes: 3, 4, 5, 6, 7, 8, 9

Weighting:
16%

Criteria for assessment:

♦ Correct functionality and behaviour of the produced app
♦ Quality of app source code, including code documentation
♦ Participation and appropriate use of tools for team software development
♦ Comprehensiveness of technical documentation

You and your team member will receive a combined mark, except:
Assessment Requirements

♦ Individual's marks will subject to peer review moderation based on CATME® feedback and scaling factors
♦ The history of a team member's interaction and use of the version control repository, team communication system and shared documents will be examined and used to moderate their individual mark.

Due date:
 End of week 11.

• Assessment task 4

Title: Lab work assessments
Description: In each lab students will be required to complete several set exercises. Solutions will be marked in the lab by tutors. Marking will include a short interview to test the student's understanding of the solutions they present. If a student fails to convince their tutor they understand a presented solution that solution will attract 0 marks. Some lab exercises will require individuals to work on their own other will require group work, in either case students will be marked individually.

Each lab will be worth 2% of a student's final mark for the unit (best 10 lab marks out of a possible 12 will be used).

This assessment relates to learning outcomes: 3, 5, 6, 7, 8
Weighting: 20%
Criteria for assessment:
 ♦ Design and correctness of exercise solution
 ♦ Ability to demonstrate understanding of presented exercise solutions

Due date: The end of each lab

• Assessment task 5

Title: Group "Client" Presentation
Description: Your team will deliver a 15 minute oral presentation describing and demonstrating your Assignment 2 app and detailing any issues you encountered. Team presentations will be made during lab time, with each student presenting for 4-5 minutes.

This assessment relates to learning outcomes: 7, 8, 9
Weighting: 4%
Criteria for assessment:
 ♦ You will be assessed on your individual presentation style (2%), as well as the team presentation as a whole (2%).
 ♦ Individual clarity and quality of oral presentation
 ♦ Structure, appropriateness, and level of team-client presentation

Due date: Week 12 Lab
Examinations

- Examination 1

 Weighting: 40%

 Length: 3 hours

 Type (open/closed book): Closed book

 Electronic devices allowed in the exam: None

Learning resources

Monash Library Unit Reading List (if applicable to the unit)
http://readinglists.lib.monash.edu/index.html

Feedback to you

Types of feedback you can expect to receive in this unit are:

- Informal feedback on progress in labs/tutes
- Graded assignments with comments
- Graded assignments without comments
- Quiz results

Extensions and penalties

Submission must be made by the due date otherwise penalties will be enforced.

You must negotiate any extensions formally with your campus unit leader via the in-semester special consideration process: http://www.monash.edu.au/exams/special-consideration.html

Returning assignments

Students can expect assignments to be returned within two weeks of the submission date or after receipt, whichever is later.

Assignment submission

It is a University requirement for students to submit an assignment coversheet for each assessment item. Faculty Assignment coversheets can be found at http://www.infotech.monash.edu.au/resources/student/forms/. Please check with your Lecturer on the submission method for your assignment coversheet (e.g. attach a file to the online assignment submission, hand-in a hard copy, or use an electronic submission). Please note that it is your responsibility to retain copies of your assessments.
Assessment Requirements

Online submission

If Electronic Submission has been approved for your unit, please submit your work via the learning system for this unit, which you can access via links in the my.monash portal.
Other Information

Policies

Monash has educational policies, procedures and guidelines, which are designed to ensure that staff and students are aware of the University’s academic standards, and to provide advice on how they might uphold them. You can find Monash’s Education Policies at: www.policy.monash.edu.au/policy-bank/academic/education/index.html

Faculty resources and policies

Important student resources including Faculty policies are located at http://intranet.monash.edu.au/infotech/resources/students/

Graduate Attributes Policy

http://www.policy.monash.edu/policy-bank/academic/education/management/monash-graduate-attributes-policy.html

Student Charter

Student services

The University provides many different kinds of support services for you. Contact your tutor if you need advice and see the range of services available at http://www.monash.edu.au/students. For Malaysia see http://www.monash.edu.my/Student-services, and for South Africa see http://www.monash.ac.za/current/.

Monash University Library

The Monash University Library provides a range of services, resources and programs that enable you to save time and be more effective in your learning and research. Go to www.lib.monash.edu.au or the library tab in my.monash portal for more information. At Malaysia, visit the Library and Learning Commons at http://www.lib.monash.edu.my/. At South Africa visit http://www.lib.monash.ac.za/.

Disability Liaison Unit

Students who have a disability or medical condition are welcome to contact the Disability Liaison Unit to discuss academic support services. Disability Liaison Officers (DLOs) visit all Victorian campuses on a regular basis.

- Website: http://www.monash.edu/equity-diversity/disability/index.html
- Telephone: 03 9905 5704 to book an appointment with a DLO; or contact the Student Advisor, Student Community Services at 03 55146018 at Malaysia
- Email: dlu@monash.edu
- Drop In: Equity and Diversity Centre, Level 1, Building 55, Clayton Campus, or Student Community Services Department, Level 2, Building 2, Monash University, Malaysia Campus
Engineers Australia Stage 1 competencies

Engineers Australia Accreditation Policy of Professional Engineering Programs requires that programs demonstrate how engineering graduates are prepared for entry to the profession and achieve Stage 1 competencies. The following information describes how this unit contributes to your development of these competencies. (Note: not all competencies may be emphasised in this unit).

<table>
<thead>
<tr>
<th>Stage 1 competency</th>
<th>How the compency is developed in this unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Knowledge and Skills base</td>
<td></td>
</tr>
<tr>
<td>1.1. Comprehension, theory based understanding of the underpinning natural and physical sciences and the engineering fundamentals applicable to the engineering discipline.</td>
<td>This unit gives an introduction to the theory underpinning programming and software engineering. Several of the lab exercises are designed to reinforce aspects of the theory.</td>
</tr>
<tr>
<td>1.2. Conceptual understanding of the mathematics, numerical analysis, statistics, and computer and information sciences, which underpin the engineering discipline.</td>
<td>This unit describes the computer science and mathematics underpinning computer hardware architecture, computation and basic algorithm analysis. Students will complete lab exercises exploring these topics.</td>
</tr>
<tr>
<td>1.3. In-depth understanding of specialist bodies of knowledge within the engineering discipline.</td>
<td>Not covered in this unit—the unit only introduces specialist concepts at a high level.</td>
</tr>
<tr>
<td>1.4. Discernment of knowledge development and research directions within the engineering discipline.</td>
<td>Not covered in this unit.</td>
</tr>
<tr>
<td>1.5. Knowledge of engineering design practice and contextual factors impacting the engineering discipline.</td>
<td>The unit introduces students to various software engineering practices, including requirements analysis, software design, communication, project management, risk management, and software testing. Students utilise this knowledge in labs and assignment work.</td>
</tr>
<tr>
<td>1.6. Understanding of the scope, principles, norms, accountabilities and bounds of sustainable engineering practice in the specific discipline.</td>
<td>Not covered in this unit.</td>
</tr>
<tr>
<td>2. Engineering application ability</td>
<td></td>
</tr>
<tr>
<td>2.1. Application of established engineering methods to complex engineering problem solving.</td>
<td>The unit presents software engineering process models and practices for effective software engineering. It also discusses the appropriateness of various computer science approaches for different tasks, though only at a high level.</td>
</tr>
<tr>
<td>2.2. Fluent application of engineering techniques, tools and resources.</td>
<td>This unit teaches systematic software engineering techniques and tools, specifically those for version control and configuration management, debugging, and team communication.</td>
</tr>
<tr>
<td>2.3. Application of systematic engineering synthesis and design processes.</td>
<td>The unit presents key aspects of the software design process and has students participate in high-level software architectural design through lab exercises.</td>
</tr>
<tr>
<td>2.4. Application of systematic approaches to the</td>
<td>This unit teaches systematic software</td>
</tr>
</tbody>
</table>
3. Professional and personal attributes

3.1. Ethical conduct and professional accountability. Not covered in this unit.

3.2. Effective oral and written communication in professional and lay domains.

Students work in small teams for much of the lab and assignment work, requiring substantial communication. They give two assessed oral presentations, the second being a mock client presentation.

3.3. Creative, innovative and proactive demeanour. Not covered in this unit.

3.4. Professional use and management of information.

Students are required to manage information during the assignments and submit these documents as part of the assessment.

Information to be used: software code, design documents, team communications, user manuals, issue and task lists.

3.5. Orderly management of self, and professional conduct.

This is covered by the various teamwork focused activities in the lab classes and assignments.

3.6. Effective team membership and team leadership.

Team roles are examined, reflected upon and used for team allocation. All assignments and a portion of the lab work is performed in teams.

Relationship between Unit Learning Outcomes and BSE Course Outcomes

<table>
<thead>
<tr>
<th>No.</th>
<th>CO 1</th>
<th>CO 2</th>
<th>CO 3</th>
<th>CO 4</th>
<th>CO 5</th>
<th>CO 6</th>
<th>CO 7</th>
<th>CO 8</th>
<th>CO 9</th>
<th>CO 10</th>
<th>CO 11</th>
<th>CO 12</th>
<th>CO 13</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

Relationship between Unit Learning Outcomes and Assessments

<table>
<thead>
<tr>
<th>No.</th>
<th>Quizzes</th>
<th>Assignments</th>
<th>Lab exercises</th>
<th>Exam</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Other Information</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7 X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8 X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9 X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>